Tele-operating Spot’s Robotic Arm Using Mixed Reality

William Talbot, Alexandru Top, Cailin Ringstrom, Emilia Szymanska
Eidgendssische Technische Hochschule Ziirich
Robotics, Systems and Control MSc Program

Supervisors: Boyang Sun, Marcel Geppert
Eidgendssische Technische Hochschule Ziirich
Computer Vision and Geometry Lab

Abstract

As mixed reality technology has matured in quality and
popularity over the last decade, a demand for sophisticated
and immersive applications has risen. Similarly intelligent
robots with advanced autonomous capabilities are increas-
ingly in demand to solve complex, dangerous or onerous
tasks, and are beginning to become part of our everyday
lives. Given this context, the project described in this report
presents a system that bridges the gap between mixed reality
and advanced mobile robotics. Using a Microsoft Hololens
2 or Android device, a human user can intuitively control
the robotic arm attached to a Boston Dynamics Spot robot,
in order to facilitate more sophisticated interaction with the
environment or enhanced perception applications. Quan-
titative tests and user experience surveys complement the
system design presented in this report, to evaluate the sys-
tem’s intuitiveness and immersion, and drive the discussion
of possible development directions.

1. Introduction

Mixed Reality (MR), which seeks to seamlessly blend
the digital and the real-life world, is an increasingly pop-
ular option for complex tasks requiring high user interac-
tion [5,24]. Alongside virtual and augmented reality (VR
and AR) [6], it offers opportunities for countless applica-
tions in fields such as medicine [14], education [11,28], de-
sign [15], infrastructure and many others [2,27]. The inte-
gration of mixed reality solutions with robotic systems is a
highly investigated topic [4, 9, 1 3]. For robot teleoperation,
many remote controllers are not intuitive, have a steep learn-
ing curve, or require users to control multiple joints simulta-
neously. On the other hand, a mixed reality device — which
offers a customizable, multimedia user interface in addition
to head, eyes and hands tracking — gives a wide range of op-
portunities for remote control implementations. Therefore,

the project presented in this report takes advantage of the
features available in a MR headset to explore the teleopera-
tion of a robotic arm attached to a legged robot. The device
chosen for this purpose was Microsoft’s Hololens 2 [22],
which is supported by the Mixed Reality Toolkit (MRTK) to
facilitate the development of MR applications in Unity. The
robot used in this study was Boston Dynamic’s quadruped
Spot, extended with a 6 degree-of-freedom robotic arm.
Starting with simple head-motion tracking and end effec-
tor motion, the objective of the project was to implement
a more advanced MR-based operational pipeline enabling
the user to control Spot’s arm and body position in accor-
dance with the head movement and voice commands. In ad-
dition to this, images from the arm’s high resolution cam-
era are streamed to the Hololens display so that the user
shares the perspective of the end effector. As in similar ap-
plications [29], an intuitive interface design is essential for a
positive user experience. Thus the system was evaluated by
collecting qualitative feedback after demonstrations of the
system to new users. This was in addition to several quan-
titative studies examining the accuracy and latency perfor-
mance of the system, detailed in Section 4.

2. Related work

There exist various approaches to robotic arm teleopera-
tion to address a broad spectrum of diverse problems. One
solution to the teleoperation problem involves decoding
grasp gestures from electromyographic signals [3], which
then can be mapped to robotic arm movements [10]. The
EMG-based control can be further improved by integrat-
ing acceleration measurements [19]. Another approach to
robot arm remote control focuses on readings from sen-
sory gloves [8, 12]. However, more and more systems rely
on image streams from either depth or conventional color
cameras [1,20]. This trend offers plenty of opportunities
for integrating mixed reality device with robotic systems
for teleoperation and collaboration. Some research has al-

ready been conducted in this field, mostly with the Oculus
Rift [16] virtual reality device and with Microsoft Hololens
devices [17,18,21].

Many applications have already been made for the Mi-
crosoft HoloLens (1) and Hololens 2 [23] using the inbuilt
“Research Mode”, enabling access for computer vision ca-
pabilities [26]. However, an application for remotely op-
erating a robotic arm mounted on a quadruped robot was
not found. The the most similar project relating to Spot
and Hololens integration found was a proposal to combine
spatial computing and egocentric sensing on mixed real-
ity devices to improve collaboration between humans and
robots [7]. One of the use cases presented in this work was
to plan a mission for Spot by placing holographic markers in
the augmented reality environment. The authors also imple-
mented teleoperation of a URS robotic arm with hand-like
end effector. However, the combination of these two use
cases was not explored, and no research examined the con-
cept of using head tracking for control of robot movement,
only hand tracking for end effector manipulation. There-
fore, the work presented in this report hopes to provide a
modular foundation for whole robot teleoperation which is
lacking in existing research, and stimulate further investiga-
tion into the integration of mixed reality with arm-equipped
mobile robots.

3. System Overview

This project sought to build a general, robust and modu-
lar foundation for future application-oriented robot teleop-
eration activities. It’s contributions are therefore:

1. Spot interface which reinterprets incoming poses and
sends both arm and body motion commands to Spot
such that the arm end effector realizes the requested
pose.

2. Hololens 2 application which performs head tracking,
and provides an immersive audio-visual interface for
the teleoperation of a robot.

3. Unity-to-ROS pose conversion module which converts
from the left-handed y-up coordinate system of native
Unity applications to the right-handed z-up convention
of the ROS standard [25].

4. Improvements to Spot ROS wrapper, spot_ros, includ-
ing bug fixes and adding a dynamic arm movement
planning time option.

5. A demonstration and quantitative evaluation of a com-
plete system that integrates the above modules.

To achieve the integration of two independent robotic
systems, the Robotic Operating System (ROS) middleware

was used as a communications layer. ROS is an open-
source suite of libraries and tools that facilitates inter-robot
communications through three separate mechanisms, all of
which are used in this project. The first is a publish-
subscribe pattern whereby processes called nodes can ei-
ther send (publish) or listen to (subscribe) well-defined mes-
sage packets on fopics. For example this is used in this
project for the sending of head-track and reset pose mes-
sages, and the reception of the image stream from the Spot
arm end effector. The second is a server-client service pro-
tocol which allow for a blocking call of a function in another
process, again through well-defined ROS message packets.
Many of the commands in the spot_ros driver are imple-
mented as services, such as opening or closing the gripper,
sitting or standing, powering on or off, and using the arm in-
verse kinematic controller. Services are particularly useful
for sending commands as they return response information
such as indicating the success or validity of the command.
This project makes extensive use of these services. The fi-
nal mechanism available in ROS is actions, which like ser-
vices allow for commands and provide feedback, but are
non-blocking so are designed for operations which take a
substantial amount of time to complete. Since the motion
of the Spot body is not instantaneous, this project’s spot in-
terface makes use a ROS action for tracking the completion
of spot body trajectory commands. Since ROS is primar-
ily designed for C++ and python applications, this project
makes use of two tools provided by Unity, a ROS C# API
Unity-Robotics-Hub, and ROS-TCP-Endpoint which is re-
quired for both ROS message transmission and reception
from the Hololens 2 device.

A comprehensive overview of the modular system is
illustrated in Figure 1, with the notable omission of the
ROS-TCP-Endpoint node for clarity, required for inter-
device network communication. In addition to the afore-
mentioned modules is an image compression node from
image_transport, a widely used ROS package, dis-
cussed in Sections 3.2 and 4.

3.1. Spot robot

The Spot interface is responsible for issuing commands
to Spot so that the arm end effector motion mirrors that of an
incoming pose stream, which in this project originates from
a Hololens 2 or Android mobile device. To achieve this,
the interface needs to decompose these desired poses, in
the form of ROS geometry_msgs/Pose messages, into
two. One of these poses is issued to the arm inverse kine-
matic controller, and the other commands the Spot body it-
self. This process is complicated by three additional behav-
iors which improve the user experience and fluidity of the
motion. These are:

1. User-configurable arm initial position and orientation.

https://github.com/willat343/spot_ros
https://github.com/willat343/spot_ros
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/ROS-TCP-Endpoint

Hololens 2 Unity Application + Display image on Unity user

=

« Transform unity object in
front of Hololens camera

(« Convert user voice into text
« Parse text for spot commands
« Execute command using spot

Arm Camera Images
interface object f«<+— sensor_msgs/ v

| CompressedImage O Smiem

o > 4—[Image Compression]

Spot Driver

(Spol Command} [Arm Camera

L Servers Driver] a

driver ROS services or reset
pose as appropriate.

« Publish head poses using a
ROS publisher.

Head Tracking LH Poses

geometry_msgs/Pose :

! Reset LH Poses ;
Ly —

i geometry_msgs/Pose H

Unity to ROS

« Convert left-handed Y-up
Unity poses to right-

handed Z-up ROS
standard poses

Head Tracking RH Poses
i geometry_msgs/Pose

i Reset RH Poses H
| geometry_msgs/Pose H {

Action Server | |(IK) Controller Serve

[Body Pose }[Inverse Kinematic J <[§]
T

I

Spot Interface

Transform pose relative to the reset reference frame.

« Decompose pose into spot arm and body poses.

« Transform arm pose relative to a initial reference.

« Call IK controller ROS service with end-effector pose
relative to body frame.

Request spot body pose through ROS action interface.

_J

Reset arm pose reference frame

Figure 1. System Overview: This project integrates three new modules as well as publicly available ROS and Unity APIs to achieve
immersive Spot teleoperation. These are the Hololens 2 Unity application, a mixed reality audio-visual interface, the Spot interface, and a

Unity-to-ROS conversion node.

2. Restriction of end effector position within a bound-
ing box region around the initial position, where the
behavior of the inverse kinematic controller is well-
defined.

3. On-demand reset feature, whereby the user can reset
the arm pose so that future motion is relative to the
current pose of the Hololens 2 or mobile device.

Furthermore, two spot motion modes were implemented.
The first is a static mode, where Spot itself remains motion-
less and only the arm is controlled, constrained within the
dimensions of the bounding box. The second extends on
this, by incorporating translation of the Spot base so that x
and y dimensions of the planning space are fully realizable.
The complexity of this system requires an understanding of
the relevant coordinate frames of the robot, shown in Fig-
ure 2. The notation 7% is used to denote the frame {B}
in the reference frame of {A}, or equivalently the SFE(3)
transform from {A} to {B}. The direction of transforms
are reversed by taking the inverse, so T4 = (T'F)_1. Us-
ing Figure 2 as a reference, the origin of the Hololens ap-
plication is defined as {O4}, which may differ from the
internal origin tracked by the Hololens device when it is
powered on, denoted as {Og}. When the application is
started, this frame is fixed to the pose of the Hololens at
that time, 754 = TJ with TH = I. When the user
sends a reset command (through voice commands, see Sec-
tion 3.2), the application origin is updated to the current
pose, Tg o= TgH , just as at start-up.

Similarly to the Hololens 2, Spot also has two origin
reference frames. Internally, Spot maintains an odometry

frame, labeled {Og} for Spot origin in this project, and
measures the the transform Tgs of the body frame {B}
in this frame through visual and kinematic odometry algo-
rithms. Because the mirrored motion must be relative to the
starting pose of Spot, this project defines the body origin
frame {Op}. The initial end effector frame {I} is defined
with respect to the body frame as T, and the transform
from {I} to the end effector frame {E} is TF

The key idea for mirroring the user’s motion then is
to map the transform between the application origin and
Hololens 2, to the transform of the Spot body from its ori-
gin and the end effector from its initial pose. This can be
expressed as Equation 1.

T8, =15 TF (1
The method to achieve this equality is a process of sev-
eral steps:

1. When the Spot interface ROS node is launched, look
up the transform Tgs of the Spot body from its odom-
etry frame, and set Tg SB to it so that TgB =1.

2. As discussed previously, when the Hololens applica-

tion is launched, set Tg 4 = TgH. This transform is
adjusted whenever the user sends a reset command.

3. When a new head track pose TgH is received, the pose

relative to the user application origin is computed as
1
H _ 70 H __ O H
T8, =180, = (182) T4,

4. The new end effector transform is computed as TF =
(T8,) ! T4, (from Equation 1). This is an optimistic

transform, which may not lie within the bounding box
region.

5. Set the translation component of TF to the closest
point within the bounding box.

6. If in translation mode, compute the new Spot body
position as TgB = TgA (TIE)71 (from Equation 1),
which will only change if T lay outside the bounding
box in the previous step. Send TgB to the Spot driver
as a command for the Spot body motion. If in static
mode, skip this step.

7. Compute the end effector pose with respect to the body
frame as T5 = TLTE, and send it as a command to
the inverse kinematic arm controller.

The Spot driver expects all poses to use a right-handed
z-up reference frame convention as described by the ROS
standard [25], however Unity uses a left-handed y-up con-
vention. Therefore a Unity-to-ROS pose conversion node
was implemented to convert between the incompatible for-
mats. This is shown in Figure 1.

Figure 2. Visualization of the coordinate frames of the Spot robot
and Hololens 2 device. The bounding box region for allowed end
effector positions is also shown.

3.2. Hololens 2 Device

Unity was used in order to develop an application for the
Hololens for the user to interact with Spot. In order to com-
municate with the rest of the system, the Unity-Robotics-
Hub API was used. The three main functionalities of the
Hololens application are:

1. Tracking and streaming the head position of the
Hololens user.

2. Receiving images from the Spot end effector camera
and displaying them in real time in a User Interface
(UD), as presented in Fig. 3.

3. Interacting with the Spot robot with voice commands.

g Voice
»’ Commands

57%

Figure 3. Hololens User Interface with hidden command list.

To achieve head tracking, the current position
of the Hololens is read and published as a ROS
geometry_msgs/Pose at the frame rate of the Hololens.
All computations to map this to a ROS coordinate frame
convention are left to the Unity-to-ROS converter as
described in Section 3.

Images from the robot arm end effector are published as
sensor_msgs/Image messages by the Spot ROS driver.
An option was also added to receive compressed images
as sensor_msgs/CompressedImage messages in ef-
fort to reduce network latency. This requires using an
additional ROS plugin called image_transport which con-
verts from the sensor_.msgs/Image message type to
the sensor_msgs/CompressedImage message type.
Based on user feedback, a white background was added to
help separate the images from the background, to improve
the visibility of the image stream and immersion of the ex-
perience.

In addition to the core motion control functionality, voice
commands to control Spot were added (Fig. 4). The text-
to-speech functionality of the Hololens was also used in
order to give audio feedback to the user, informing them
on the success of their commands. To remind the user of
the available options, a screen is shown on startup which
lists all available commands and their function. This screen
can also be hidden and shown using voice commands. To
help prevent unintentional commands from being sent to the
robot, speech commands are initially disabled, and can be
enabled and disabled by the user. All requests are sent to
Spot via ROS services provided by the Spot ROS wrapper,
as detailed in Section 3.

https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/Unity-Robotics-Hub
http://wiki.ros.org/image_transport

Available Voice Commands

Speech On - Enable voice commands
Speech Off - Disable voice commands
il Open - Open gripper

| Close - Close gripper

l| Reset - Reset arm position
Self Right - Right Spot from roll over
Stand - Have Spot stand
Sit - Have Spot sit
Roll Over - Have Spot roll over
E Stop - Trigger emergency stop

4 EStop Release - Release emergency stop

Stow - Stow arm
Unstow - Unstow arm
Enable Tracking - Enable head tracking functionality
Disable Tracking - Disable head tracking functionality
Power On - Power on Spot
Power Off - Power off spot

To hide this screen say “Hide Commands" and to show this
‘ screen say "Show Commands*

Figure 4. Hololens User Interface with the command list.

Finally, a automatically updating battery icon and an
voice command indicator light, showing if speech is en-
abled or disabled, were also added to the UI for an improved
user experience.

3.3. Android device

The MRTK Unity application, originally built for
Hololens 2, was also deployed on Android with the help
of Google ARCore library. The position of the objects was
adjusted to make the interface easier to view on an Android
phone. Deployment to the android device was highly ad-
vantageous during development. The variety of devices al-
lowed for easier and faster testing of our application, fa-
cilitating the simultaneous development of modules in our
system. Furthermore the deployment process for Android
devices is much faster than that for the Hololens 2, allow-
ing us to more rapidly test new features and resolve issues.
A screenshot of the application can be seen in Figure 5.

Figure 5. Spot controlled with Android app.

The Android application deployment required the mod-
ification of the shader used for rendering the application
as the latest version of MRTK is not fully compatible
with the Google ARCore. The issue was identified thanks

Datatype Bandwidth (KB/image)
Uncompressed 920
Compressed 82

Table 1. Network bandwidth measured when streaming com-
pressed and uncompressed images from Spot to the Hololens 2.

to the build errors given by Unity and was fixed using
a workaround provided in a Github issue. These issues
should dissipate as the compatibility between the libraries
improves in further version releases.

A number limitations were identified for the Android ap-
plication:

* Voice Recognition — MRTK Voice Recognition Input
is not currently compatible with Android devices and
Google ARCore does not provide voice capture func-
tionality. A custom module would need to be imple-
mented in order to support voice recognition input on
Android devices.

* MRTK Buttons — MRTK Buttons have issues when
used on Android deployments. While both the anima-
tion and sound of the buttons triggers on press, unfor-
tunately the attached scripts do not execute as they do
when the app is deployed to Hololens 2 or when the
application was run with Unity. This issue was not fur-
ther investigated and the feature was discarded.

Due to the presented limitations, the Android application
was only used in part of the testing of the spot’s gripper and
body movement. Without Voice Recognition or Buttons, the
app was not appropriate for the complete testing of the Spot
control interface, such as the reset-on-demand functionality.

4. System Evaluation and Experiments
4.1. Image Streaming Evaluation

Bandwidth and latency were measured for streaming im-
ages from Spot to the Hololens as both compressed and un-
compressed images, with the results for both cases shown in
Table 1. It was observed that using compressed images re-
sulted in an 11.25-fold network bandwidth decrease, which
is a substantial improvement and may be highly advanta-
geous if this system were deployed within a bandwidth-
limited environment.

To measure the latency performance and assess the ben-
efits of image compression in this system, we measured
how delayed image messages were at different stages of
the pipeline. For each message type, two measurements
were made: the difference between the image timestamp
and the Spot system time at arrival time and the difference
between the image timestamp and remote device (Hololens

https://developers.google.com/ar

Uncompressed Compressed
Hololens Latency (s) 0.717 £0.153 0.653 £ 0.160
Onboard Latency (s) 0.586 £ 0.153 0.590 4= 0.152
Network Latency (s) 0.127 £0.032 0.067 = 0.032

Table 2. Comparison of mean latency of arm image stream for
compressed and uncompressed messages over a 60s period. The
image delay is measured on the Hololens device and onboard Spot
itself, and the network latency is the difference between them.

2, Android device, ground station) system time. These mea-
surements are summarized in Table 2. It was observed that
compression decreased the overall delay by 0.06s, which
can be attributed to a reduction network latency due to the
reduced message size. However, the baseline latency of im-
age acquisition on the Spot system itself at almost 0.6 s sig-
nificantly outweighs the network latency, and thus compar-
atively image compression does not have a large effect on
the user experience.

4.2. Spot Movement Evaluation

The Spot driver publishes the relative transform between
the arm links using the joint states at a high frequency. From
this the pose of the end effector relative to the base link is
estimated, and it is thus possible to measure the error be-
tween the requested and true pose. Figure 7 shows an ex-
ample of the position and angular error experienced during
a live demonstration of static Spot teleoperation with the
Hololens 2 (movements presented in Fig. 6). Through an
analysis of these results with a video of the demonstration,
several clear sources of error could be identified. The key
source of the persistent error across the whole recording is
latency in the response, caused primarily by the planning
and execution time of the arm inverse kinematic controller.
Large movements at higher velocities accentuate this, such
as between 60 and 63 s and between 68 and 70s. A second
source of error can be seen in the 71 to 73 s period, where
the translation error increases significantly. This occurs be-
cause the user’s head moves far enough from their origin
that the end effector reaches the edge of the bounding box
operating region. This error is therefore expected as part of
the interface design. Finally the large angular errors in the
52 to 54s and 80 to 85s periods is a consequence of the
significant limitation of the inverse kinematic controller to
yaw (pure rotation about z axis) when the user rotates their
head from side to side. The joint configuration of the arm
caused the simple arm controller to fail for this movement.
Since this is a very natural movement for a new user and
the large angular error results in a camera stream that does
not reflect their head motion, this issue posed a serious risk
of breaking the immersion of the teleoperation experience.
While this could be mitigated by teaching new users to look

down or up while turning their head, a movement pattern
that the arm controller could smoothly achieve, ultimately
the problem could only be solved by using a different robot
arm or more sophisticated planner.

Figure 6. Examples of robot control.

4.3. User Experience Testing

Four participants were recruited for user experience
tests, three of whom had not previously used a Hololens
device. We had all participants perform the initialization
procedure of Spot using voice commands and control Spot’s
movement by moving around using the Hololens. Follow-
ing the test, all completed a survey with giving both nu-
merical ratings and open-ended feedback on different com-
ponents of the system. Figure 9 contains charts showing
the ratings users gave for the image streaming, voice com-
mands, and Spot movement. Figure 8 shows a pie chart for
the number of unintended events they experienced while us-
ing the application. Unintended events include voice recog-
nition errors such as not detecting the spoken command or
calling a different command than the one intended by the
user. Wrong behavior of the robot while following the user
is also considered unintended event.

How many unintended events occurred while using the robot?

4 responses

@ 0-1 Unintended Events
@ 2-5 Unintended Events.
More than 5 Unintended Events

Figure 8. Chart showing the number of unintended events experi-
enced by each user.

02—

0.15
01—

0.05 —

position error (m)

0.05 |—

oal

50 55 60 65 70

angle error (deg)

75
timestamp (s)

| J

80 85 90 95 100

75 80 85 90 95 100
timestamp (s)

Figure 7. End effector translational and angular error during a static live demonstration.

Open-ended questions asked users what they liked, did
not like, and what they would like to see added. Common
positive feedback included responsiveness and smoothness
of the system. Negative feedback primarily focused on the
image stream with complaints about blurriness, lack of vis-
ibility against the background, and video delay. The most
common suggestions for future work were adding body ro-
tation and improving the yaw rotation of the end effector.

5. Discussion

Throughout the development of the project and through
user experience testing, many challenges were encountered
and avenues for improvement were identified. The most
common improvements and additions suggested from the
user feedback were improved yaw motion of the arm, im-
proved image stream quality, improved responsiveness, and
the addition of body rotation. Prior to user experience test-
ing, we have also identified these issues and identified po-
tential ways to improve them.

For the improvement of arm yaw movement arm and the
addition of body rotation, additions would need to be made
to the controller. Currently, the built-in inverse kinematic
controller is significantly limited in yaw rotation. As stated
earlier in the report, in order to improve this, a more sophis-
ticated controller would need to be implemented, or arm
with a different joint configuration be used.

Furthermore, the Spot arm planner currently plans every
movement with a constant time for pose completion. Both
faster and slower user movement would be planned with the

same execution time. A short time would not be viable for
faster user movements as they could be time limited and
fail while a short time would not be viable for slower user
movements as they would have a high latency and making
the arm lag heavily behind the user. An improvement for
addressing the issue would be setting a determined planner
time which would be dependent on the speed of the user
movement.

It would also enhance the functionality of the system if
the Spot body rotation was implemented. As for now, Spot
only translates its body to compensate for the user’s out-of-
bound movements. That limits the applications of the sys-
tem as it is almost impossible to see what happens behind
the robot — the arm limits do not allow for 360° rotation
around the Z axis of the first joint, so to look behind, a user
would need to make the robot translate to the side and then
try to see what was behind the robot. This is an inconvenient
workaround, therefore a better solution including Spot body
rotation would need to be implemented.

The Spot ROS wrapper also proved to be somewhat
problematic. The arm control service always failed, and
although the requested movement was performed, it is be-
lieved that this failure may have been causing the arm to
vibrate under certain joint configurations. This was solved
by identifying and correcting the error in the source code.
Furthermore, the maximum linear and angular velocities of
Spot’s movement were set to O by default, so the movement
commands were not executed and no useful feedback for
debugging this failure were reported at the software level.

It was therefore essential to remember to run the launch file
with non-zero velocities parameters. Additionally it was no-
ticed that a patch for Spot body movement had been imple-
mented in the available ROS action interface, but not topic
interface, so a transition was made to the action interface.

With regards to image stream quality, improvements in
responsiveness and visibility were suggested in the user
feedback. As can be seen in Table 2, we were able to im-
prove the latency using compressed images, but the delay
between image capture and receiving the ROS message out-
put from the Spot ROS driver far outweighs the latency from
transmitting the image over the network. Therefore, the im-
provements that can be made here are limited, as they prob-
ably depend on implementation details in Spot ROS wrap-
per or Boston Dynamics API. However, one way to improve
the visibility and immersivity of the application could be by
experimenting with VR applications. The advantage of VR
applications is that they offer separation from the real envi-
ronment which could make the application more immersive
than using an AR device in this case. When the Hololens
was present in the same environment as Spot, the overlay
of the camera stream on the background environment could
be distracting or confusing for the user thus breaking the
immersion.

Another issue encountered during the development of the
application was the limitation of MRTK features in Android
applications. As discussed in Section 3.3, the use of buttons
was problematic and the voice recognition did not work at
all, requiring a custom module to be built, and limiting its
usefulness in comparison to the full-functioning Hololens
2 application. This issue could be resolved by using a dif-
ferent tool for programming the app, at the cost of making
the parallel development of Hololens and Android app more
complex and time consuming.

6. Conclusions

Mixed reality and robotic technologies are becoming in-
creasingly powerful and prevalent, and their integration is
an opportunity for intuitive human-robot interaction. The
aim of this project was to explore this idea by developing an
application enabling a Hololens 2 user to control the pose of
a Spot arm end effector with their head motion while view-
ing the image stream from the gripper camera on their dis-
play. In addition to this, further control capabilities were
added into the application through voice recognition tools.

Long-term, there are many real life human-in-the-loop
applications for which the work of this project could serve
as a foundation, such as remote surveillance and inspection.
This mixed reality application allows a user to be immersed
in and explore a remote environment from any offsite lo-
cation. The benefits of this are potentially significant, such
as reducing risk to human health in potentially dangerous
sites, to cost reduction since inspection experts do not need

to travel physically to the site of interest.

In additional to those mentioned in Section 5, future
steps could including testing and comparing performances
on different AR and VR headsets (e.g. Oculus Rift, Magic
Leap One or Raptor AR). It would also be interesting to
apply and compare the implemented approach to different
kinds of robots with robotic arms, such as bipedal robots
and investigate how they could be utilized in real-life appli-
cations.

This report has demonstrated the potential for MR tech-
nology to provide an immersive and intuitive method for
controlling the pose of a robot end effector. The pro-
posed application could be used as a foundation for fur-
ther projects in the field of human-robot interaction, re-
mote surveillance, infrastructure inspection, and many other
fields.

0On a scale from 1 10 5 how did the movemnent of the spot gripper feel with the respect to your head
mavement?

4 responses

0 (0% 000%)

On a scale from 1 to 5 how did the translation of the rabot feel with respect to your movement?

1 2 3

On a scale from 1 to 5 how responsive was the camera stream from the robot?

4 responses

0 {0%) 0(0%) 0(0%)

On a scale from 1 to 5 haw was your voice command interaction with the robot?

4 responses

0 40%) 0(0%) 0(0%)

Figure 9. Charts of user experience ratings.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

Mohamed O. Alamin, EssamEldin M. Khadir, and Sharief F.
Babiker. A vision-based teleoperation method for a robotic
arm with 4 degrees of freedom. In 2016 Conference of Basic
Sciences and Engineering Studies (SGCAC), pages 19-23,
2016. 1

Lisa Avila and Mike Bailey. Augment your reality. IEEE
Computer Graphics and Applications, 36:6-7, 01 2016. 1

I. Batzianoulis, S. El-Khoury, E. Pirondini, M. Coscia, S.
Micera, and A. Billard. Emg-based decoding of grasp ges-
tures in reaching-to-grasping motions. Robotics and Au-
tonomous Systems, 91:59-70, 2017. 1

Ian Yen-Hung Chen, Bruce MacDonald, and Burkhard Wun-
sche. Mixed reality simulation for mobile robots. In 2009
IEEFE International Conference on Robotics and Automation,
pages 232-237. IEEE, 2009. 1

Steven Chen and Henry Duh. Interface of mixed reality:
from the past to the future. CCF Transactions on Pervasive
Computing and Interaction, 1:1-19, 01 2019. 1

Pietro Cipresso, Irene Alice Chicchi Giglioli, Mari-
ano Alcaifiiz Raya, and Giuseppe Riva. The past, present, and
future of virtual and augmented reality research: A network
and cluster analysis of the literature. Frontiers in Psychology,
9,2018. 1

Jeffrey Delmerico, Roi Poranne, Federica Bogo, Helen
Oleynikova, Eric Vollenweider, Stelian Coros, Juan Nieto,
and Marc Pollefeys. Spatial computing and intuitive inter-
action: Bringing mixed reality and robotics together. /IEEE
Robotics & Automation Magazine, 29(1):45-57, 2022. 2

Bin Fang, Di Guo, Fuchun Sun, Huaping Liu, and Yupei
Wu. A robotic hand-arm teleoperation system using hu-
man arm/hand with a novel data glove. pages 2483-2488,
122015. 1

Fabrizio Ghiringhelli, Jérdme Guzzi, Gianni A Di Caro, Vin-
cenzo Caglioti, Luca M Gambardella, and Alessandro Giusti.
Interactive augmented reality for understanding and analyz-
ing multi-robot systems. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1195—
1201. IEEE, 2014. |

Hussein F. Hassan, Sadiq J. Abou-Loukh, and Ibra-
heem Kasim Ibraheem. Teleoperated robotic arm movement
using electromyography signal with wearable myo armband.
Journal of King Saud University - Engineering Sciences,
32(6):378-387, 2020. 1

Jennifer Herron. Augmented reality in medical education
and training. Journal of Electronic Resources in Medical
Libraries, 13:1-5, 05 2016. 1

Haiying Hu, Jiawei Li, Zongwu Xie, Bin Wang, Hong Liu,
and G. Hirzinger. A robot arm/hand teleoperation system

with telepresence and shared control. volume 2, pages 1312
— 1317, 08 2005. 1

Wolfgang Honig, Christina Milanes, Lisa Scaria, Thai Phan,
Mark Bolas, and Nora Ayanian. Mixed reality for robotics.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5382-5387, 2015. 1

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

Karl-Franz Kaltenborn and O Rienhoff. Virtual reality in
medicine. Methods of information in medicine, 32:407-17,
03 1994. 1

Lee Kent, Chris Snider, James Gopsill, and Ben Hicks.
Mixed reality in design prototyping: A systematic review.
Design Studies, 77, 09 2021. 1

Maram Khatib, Khaled Al Khudir, and Alessandro De Luca.
Human-robot contactless collaboration with mixed reality in-
terface. Robotics and Computer-Integrated Manufacturing,
67:102030, 2021. 2

Tomas Kot, Petr Novak, and Jan Babjak. Using hololens
to create a virtual operator station for mobile robots. pages
422-427, 05 2018. 2

Ondrej Kyjanek, Bahar Al Bahar, Lauren Vasey, Benedikt
Wannemacher, and Achim Menges. Implementation of an
augmented reality ar workflow for human robot collaboration
in timber prefabrication. 06 2019. 2

Juxi Leitner, M. Luciw, Alexander Forster, and J. Schmid-
huber. Teleoperation of a 7 dof humanoid robot arm using
human arm accelerations and emg signals. 06 2014. 1
Shuang Li, Jiaxi Jiang, Philipp Ruppel, Hongzhuo Liang,
Xiaojian Ma, Norman Hendrich, Fuchun Sun, and Jianwei
Zhang. A mobile robot hand-arm teleoperation system by
vision and imu, 2020. 1

Congyuan Liang, Chao Liu, Xiaofeng Liu, Long Cheng,
and Chenguang Yang. Robot teleoperation system based on
mixed reality. In 2019 IEEE 4th International Conference on
Advanced Robotics and Mechatronics (ICARM), pages 384—
389,2019. 2

Yang Liu, Haiwei Dong, Longyu Zhang, and Abdulmotaleb
El Saddik. Technical evaluation of hololens for multimedia:
A first look. IEEE Multimedia, PP:1-1, 10 2018. 1

Sebeom Park, Shokhrukh Bokijonov, and Yosoon Choi. Re-
view of microsoft hololens applications over the past five
years. Applied Sciences, 11:7259, 08 2021. 2

Somaiieh Rokhsaritalemi, Abolghasem Sadeghi-Niaraki,
and Soo-Mi Choi. A review on mixed reality: Current
trends, challenges and prospects. Applied Sciences, 10:636,
01 2020. 1

ROS. Standard units of measure and coordinate conventions.
Available at https://www.ros.org/reps/rep-0103.html. 2, 4
Dorin Ungureanu, Federica Bogo, Silvano Galliani, Pooja
Sama, Xin Duan, Casey Meekhof, Jan Stiihmer, Thomas J.
Cashman, Bugra Tekin, Johannes L. Schonberger, Pawel Ol-
szta, and Marc Pollefeys. Hololens 2 research mode as a tool
for computer vision research, 2020. 2

Rick Van Krevelen and Ronald Poelman. A survey of aug-
mented reality technologies, applications and limitations. In-
ternational Journal of Virtual Reality (ISSN 1081-1451),9:1,
06 2010. 1

Shiyao Wang, Michael Parsons, Jordan Stone-McLean, Pe-
ter Rogers, Sarah Boyd, Kristopher Hoover, Oscar Meruvia-
Pastor, Minglun Gong, and Andrew Smith. Augmented real-
ity as a telemedicine platform for remote procedural training.
Sensors, 17:2294, 10 2017. 1

Helene Xue, Puneet Sharma, and Fridolin Wild. User satis-
faction in augmented reality-based training using microsoft
hololens. Computers, 8:9, 01 2019. 1

https://www.ros.org/reps/rep-0103.html

	. Introduction
	. Related work
	. System Overview
	. Spot robot
	. Hololens 2 Device
	. Android device

	. System Evaluation and Experiments
	. Image Streaming Evaluation
	. Spot Movement Evaluation
	. User Experience Testing

	. Discussion
	. Conclusions

