PROJEKT - KWIECIEŃ 2020r. **WYŚWIETLACZ SIEDMIOSEGMENTOWY** PODSTAWY TECHNIKI MIKROPROCESOROWEJ

Nie licz dni. Spraw, by każdy dzień się liczył.

~Muhammad Ali

AUTORZY:

Emilia Szymańska Jakub Michalski

PROWADZĄCY KURS: dr. inż. Antoni Izworski

ZADANIE 1

1. Zadanie do wykonania

Przeanalizuj schemat, wykonaj montaż, napisz program i przetestuj układ zapalający wszystkie diody wyświetlacza siedmiosegmentowego W1. Użyj następujących komponentów:

- wyświetlacz siedmiosegmentowy (wspólna anoda, Wyświetlacz 7-segmentowy),
- 8 sztuk rezystorów (330 Ω, Rezystor),
- moduł Arduino Uno R3 (Arduino Uno R3).

2. Schemat montażowy podzespołów elektrycznych

4. Wytyczne do uruchomienia

Wykonaj montaż układu zgodnie ze schematem. Napisz program ustawiający wszystkie piny z portu D na 0. Załaduj program do mikrokontrolera, podaj zasilanie do gniazda USB i sprawdź, czy świecą się wszystkie diody wyświetlacza siedmiosegmentowego W1.

5. Obsługa środowiska

Na stronie internetowej <u>www.tinkercad.com</u> po naciśnięciu przycisku "Zacznij projektowanie" na stronie startowej i zalogowaniu się wejdź w zakładkę "Circuits". Wybierz opcję "Utwórz nowy obwód". Wybierz potrzebne komponenty, połącz je przewodami i po wykonaniu montażu naciśnij przycisk "Uruchom symulację". W celu zakończenia symulacji i możliwości powrotu do modyfikacji obwodu wybierz "Zatrzymaj symulację". Szczegółowa instrukcja w załączniku "Obsluga_Tinkercad".

6. Kod źródłowy

7. Opis załadowania do systemu gotowego projektu

W celu uzyskania dostępu do gotowego projektu wejdź na stronę internetową <u>www.tinkercad.com</u> i na stronie startowej naciśnij przycisk "Zacznij projektowanie". Utwórz konto osobiste lub zaloguj się przy użyciu istniejącego konta. Wyszukaj w kategorii "Circuits" projekt o nazwie "PTM1" przypisane do użytkownika "emiliaszym". Zaznacz projekt i wybierz opcję "Kopiuj i edytuj". W projekcie w sekcji "Kod" znajduje się również kod źródłowy potrzebny do uruchomienia.

ZADANIE 2

1. Zadanie do wykonania

Przeanalizuj schemat, wykonaj montaż i przetestuj układ z dwoma wyświetlaczami siedmiosegmentowym W1 i W2, który - zapalając odpowiednie segmenty - wyświetla po kolei cyfry od 0 do 9 na obu wyświetlaczach jednocześnie. Użyj następujących komponentów:

- 2 sztuki wyświetlaczy siedmiosegmentowych (wspólna anoda, Wyświetlacz 7-segmentowy),
- 8 sztuk rezystorów (330 Ω, Rezystor),
- moduł Arduino Uno R3 (Arduino Uno R3).

2. Schemat montażowy podzespołów elektrycznych

3. Schemat połączeń elektrycznych

4. Wytyczne do uruchomienia

Wykonaj montaż układu zgodnie ze schematem. Napisz program realizujący w pętli wyświetlanie cyfr od 0 do 9. Załaduj program do mikrokontrolera, podaj zasilanie do gniazda USB i sprawdź, czy wyświetlają się odpowiednie i takie same cyfry na obu wyświetlaczach.

	DP	g	f	е	d	С	b	а	-
	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	wartości
0	1	1	0	0	0	0	0	0	0xc0
1	1	1	1	1	1	0	0	1	0xf9
2	1	0	1	0	0	1	0	0	0xa4
3	1	0	1	1	0	0	0	0	0xb0
4	1	0	0	1	1	0	0	1	0x99
5	1	0	0	1	0	0	1	0	0x92
6	1	0	0	0	0	0	1	0	0x82
7	1	1	1	1	1	0	0	0	0xf8
8	1	0	0	0	0	0	0	0	0x80
9	1	0	0	1	0	0	0	0	0x90

5. Sposób wyliczania wartości heksadecymalnych do wyświetlania cyfr

6. Obsługa środowiska

Na stronie internetowej <u>www.tinkercad.com</u> po naciśnięciu przycisku "Zacznij projektowanie" na stronie startowej i zalogowaniu się wejdź w zakładkę "Circuits". Wybierz opcję "Utwórz nowy obwód". Wybierz potrzebne komponenty i połącz je przewodami. W zakładce "Kod" wybierz "Tekst" i tu umieść swój kod źródłowy. Po wykonaniu montażu i napisaniu programu naciśnij przycisk "Uruchom symulację". W celu zakończenia symulacji i możliwości powrotu do modyfikacji obwodu oraz kodu wybierz "Zatrzymaj symulację". Szczegółowa instrukcja w załączniku "Obsluga_Tinkercad".

7. Kod źródłowy

```
1 #include<avr/io.h>
                                  //biblioteka IO
    #include<util/delay.h>
                                  //biblioteka z opcjami opoznien
 2
                                //zdefiniowanie czestotliwosci procesora na 16 MHz
    #define F CPU 1600000UL
 5
6
7 int main()
8 {
9 DDRD=0
                         //zdefiniowanie całego portu D jako wyjścia
        DDRD=0xff;
        PORTD=0x00;
                                   // ustawienie wszystkich pinow portu D na wartosc 0
11
12
13
14
15
16
17
18
19
20
21
        unsigned char cyfra[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //definiowanie sekwencji 0 i 1 do zalaczania kolejnych cyfr
        int i=0;
                                //zdefiniowanie zmiennej decydujacej o tym, ktora cyfra bedzie wyswietlona
                                 //nieskonczona petla
        while(1)
            PORTD = cyfra[i]; //wyswietlanie kolejnej cyfry
_delay_ms(1000); //opoznienie
            i++;
            if(i==10)i=0;
        }
        return 0;
24 }
```

8. Opis załadowania do systemu gotowego projektu

W celu uzyskania dostępu do gotowego projektu wejdź na stronę internetową <u>www.tinkercad.com</u> i na stronie startowej naciśnij przycisk "Zacznij projektowanie". Utwórz konto osobiste lub zaloguj się przy użyciu istniejącego konta. Wyszukaj w kategorii "Circuits" projekt o nazwie "PTM2" przypisane do użytkownika "Jakub Michalski". Zaznacz projekt i wybierz opcję "Kopiuj i edytuj". W projekcie w sekcji "Kod" znajduje się również kod źródłowy potrzebny do uruchomienia.

ZADANIE 3

1. Zadanie do wykonania

Przeanalizuj schemat, wykonaj montaż i przetestuj układ z dwoma wyświetlaczami siedmiosegmentowymi W1 i W2, które wyświetlają wybraną liczbę dwucyfrową o różnych cyfrach - w naszym przykładzie liczbę 17. W tym celu wykorzystaj sterowanie przez multipleksowanie, dołączając tranzystory T1 i T2, których bazy podłączone zostaną do portu B. Użyj następujących komponentów:

- wyświetlacz siedmiosegmentowy (wspólna anoda, Wyświetlacz 7-segmentowy),
- 8 sztuk rezystorów (330 Ω, Rezystor),
- 2 sztuki rezystorów (10 kΩ, Rezystor),
- 2 sztuki tranzystorów bipolarnych (Tranzystor PNP (bipolarny)),
- moduł Arduino Uno R3 (Arduino Uno R3).

2. Schemat montażowy podzespołów elektrycznych

3. Schemat połączeń elektrycznych

4. Wytyczne do uruchomienia

Wykonaj montaż układu zgodnie ze schematem. Napisz program realizujący wyświetlenie wybranej przez siebie liczby dwucyfrowej o różnych cyfrach - w naszym przykładzie liczby 17. Załaduj program do mikrokontrolera, podaj zasilanie do gniazda USB i sprawdź, czy wyświetla się wybrana liczba.

	DP	g	f	е	d	С	b	а	-
	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	wartości
0	1	1	0	0	0	0	0	0	0xc0
1	1	1	1	1	1	0	0	1	0xf9
2	1	0	1	0	0	1	0	0	0xa4
3	1	0	1	1	0	0	0	0	0xb0
4	1	0	0	1	1	0	0	1	0x99
5	1	0	0	1	0	0	1	0	0x92
6	1	0	0	0	0	0	1	0	0x82
7	1	1	1	1	1	0	0	0	0xf8
8	1	0	0	0	0	0	0	0	0x80
9	1	0	0	1	0	0	0	0	0x90

5. Sposób obliczania wartości heksadecymalnych do wyświetlania cyfr

6. Obsługa środowiska

Na stronie internetowej <u>www.tinkercad.com</u> po naciśnięciu przycisku "Zacznij projektowanie" na stronie startowej i zalogowaniu się wejdź w zakładkę "Circuits". Wybierz opcję "Utwórz nowy obwód". Wybierz potrzebne komponenty i połącz je przewodami. W zakładce "Kod" wybierz "Tekst" i tu umieść swój kod źródłowy. Po wykonaniu montażu i napisaniu programu naciśnij przycisk "Uruchom symulację". W celu zakończenia symulacji i możliwości powrotu do modyfikacji obwodu oraz kodu wybierz "Zatrzymaj symulację". Szczegółowa instrukcja w załączniku "Obsluga_Tinkercad".

7. Kod źródłowy

```
1 #include<avr/io.h> //biblioteka IO
2 #include<util/delay.h> //biblioteka z opcjami opoznien
3 #define F_CPU 1600000UL //zdefiniowanie czestotliwosci procesora na 16 MHz
1 #include<avr/io.h>
4
5
    int main()
6
    {
         DDRD=0xff;
                                        //zdefiniowanie całego portu D jako wyjścia
                           //ustawienie wszystkich pinow portu D na wartosc 0
//zdefiniowanie portu B0 i B1 jako wyjścia
8
         PORTD=0x00;
9
         DDRB =0x03;
10
11
12
13
14
15
16
17
18
19
20
21
22
23
         unsigned char cyfra[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //definiowanie sekwencji 0 i 1 do zalaczania kolejnych cyfr
         while(1)
                                        //nieskonczona petla
         {
               PORTB=0xfd;
                                         //zalaczenie W1
            PORTD = cyfra[1]; //wyswietlenie cyfry 1
_delay_ms(10); //opoznienie
           PORTB=0xfe; //zalaczenie W2
PORTD = cyfra[7]; //wyswietlenie cyfry 7
              _delay_ms(10);
                                        //opoznienie
24
      }
26
      return 0;
27 }
```

8. Opis załadowania do systemu gotowego projektu

W celu uzyskania dostępu do gotowego projektu wejdź na stronę internetową <u>www.tinkercad.com</u> i na stronie startowej naciśnij przycisk "Zacznij projektowanie". Utwórz konto osobiste lub zaloguj się przy użyciu istniejącego konta. Wyszukaj projekt o nazwie "PTM3" przypisane do użytkownika "Jakub Michalski". Zaznacz projekt i wybierz opcję "Kopiuj i edytuj". W projekcie w sekcji "Kod" znajduje się również kod źródłowy potrzebny do uruchomienia.