
EMOTION RECOGNITION USING
CONVOLUTIONAL NEURAL NETWORK

Franko Šikić
University of Zagreb

Zagreb, Croatia
franko.sikic@fer.hr

Marko Šandrk
University of Zagreb

Zagreb, Croatia
marko.sandrk@fer.hr

Jinyuan Li
North China Electric Power University

Baoding, China
201709000712@ncepu.edu.cn

Emilia Szymańska
Wroclaw University of Science and Technology

Wroclaw, Poland
248975@student.pwr.edu.pl

Igor Zieliński
Wroclaw University of Science and Technology

Wroclaw, Poland
248944@student.pwr.edu.pl

Abstract—This paper reviews the tools and baseline models
used in the team project conducted at University of Zagreb.
Project’s goal was to train the Convolutional Neural Network
to recognize human emotions from face images. Pre-trained
MobileNetV2 and EfficientNetB0 were used as baseline models,
while the optimal architectures and hyper-parameters were
found with the help of 4-fold cross validation. Obtained results
are presented alongside with performance comparison of used
models.

Index Terms—CNN, MobileNet, EfficientNet, emotion recogni-
tion, image analysis.

I. INTRODUCTION

Emotions play a vital role in any inter-personal communica-
tion. Therefore, it is unsurprising that the recognition of facial
emotion has been a crucial subject of much recent research.
There has been interest in human emotion recognition in many
different fields including, but not limited to, human-computer
interface [1], safe driving [2], online education [3], animation
[4] and security [5].

Emotions are expressed in various ways, such as facial
expression, voices, physiological signals and text [6]. Among
these features, facial expressions are the most useful ones since
they are visible, they contain many useful information for
emotion recognition, and it is easier to collect a large dataset
of faces (than other means for human recognition) [7].

In the last 10 years, deep learning, as a part of a broader
family of machine learning methods based on artificial neu-
ral networks with representation learning, has been growing
rapidly since these methods can be used in various fields
of science and technology. Especially, convolutional neural
networks (CNNs), a class of deep neural networks, have made
great success in image recognition [8]. They can achieve good
performance in a variety of image classification tasks.

In this study, we took advantages of MobileNetV2 and
EfficientNetB0. Explanation of the key characteristics of these
models are in the Related work section. We used Efficient-
NetB0 as it is a part of EfficientNet family which has been
providing the best results in image classification problems for

the last couple of years. MobileNetV2 was chosen too as it
is a very small model with good performance. Both models
were pre-trained on ImageNet dataset as we wanted to take
advantage of transfer learning. Used dataset is ExpW Cleaned
dataset [9], which contains a total of 84,830 pictures, with
7 labels. The distribution of our dataset is shown in Table I,
while examples of images are presented in Fig. 1.

Fig. 1. Examples of images.

Dataset Distribution

Emotion Samples

neutral 31188

happiness 28111

sadness 10393

surprise 6848

disgust 3688

anger 3548

fear 1047

TABLE I
DATA DISTRIBUTION

1



II. RELATED WORK

A. MobileNetV1

Although a standard Convolutional Neural Network (CNN)
is more efficient than a traditional multilayer perceptron, it
still demands a lot of parameters as well as computational
expences. To reduce both model size and complexity, a Depth-
wise Separable Convolution approach has been introduced
by Google Inc. researchers [10]. MobileNetV1’s principle of
operation is based on the two following steps:

• depthwise convolution,
• pointwise convolution.

As shown in Fig. 21, depthwise convolution is the channel-
wise DK×DK spatial convolution, while the next step is in
fact 1×1 convolution performed to change the dimension.

Fig. 2. Depthwise Separable Convolution.

Due to the use of this method, a significant computation re-
duction is achieved. In comparison with standard convolutional
network, the cost ratio of depthwise separable convolution is
equal to 1

N + 1
D2

K
, where N is the number of output channels

and DKxDK stands for the kernel size.
In MobileNet, Batch Normalization (BN) and ReLU are

applied after each convolution. Additionally, two new pa-
rameters are introduced for the MobileNet to be regulated
easily: Width Multiplier α and Resolution Multiplier ρ. Width
Multiplier’s purpose is the control of a layer’s input width,
while Resolution Multiplier is in charge of scaling the input
image resolution of the network.

The researchers in [10] have proved that MobileNet ap-
proach results in much fewer multiplication and additions
(Mult-Adds) alongside with parameters with only a slight
loss in accuracy. It has been presented with an example of
ImageNet dataset shown in table II.

1Source: https://towardsdatascience.com/review-mobilenetv1-depthwise-
separable-convolution-light-weight-model-a382df364b69

Model Accuracy Million Million
Mult-Adds Parameters

Standard Conv. 71.7% 4866 29.3
Depthwise Separable Conv. 70.6% 569 4.2

TABLE II
COMPARISON OF TWO APPROACHES WITH IMAGENET DATASET

Some of the applications of MobileNet are object detec-
tions, finegrain classification, landmark recognition and face
attributes, therefore this architecture of neural network has
been used in the emotion recognition.

B. MobileNetV2

MobileNetV2 presented in [11] is a successor of Mo-
bileNetV1 - its architecture as well uses the idea of Depthwise
Separable Convolution, but it expands it with two other
approaches: inverted residuals and linear bottlenecks.

A residual block consists of a convolutional block whose
first and last layer are connected with a skip connection.
This approach gives the neural network a possibility to access
activations that were not modified in the convolutional block
earlier. The input has a high number of channels, which are
then compressed with 1x1 convolution. In order to add input
and output in the end, the number of channels is increased
again, as it is shown in Fig. 3 (source: [11]).

Fig. 3. Residual block.

MobileNetV2 follows an inverted approach. The first step
is to widen the network using a 1x1 convolution. At the end,
another 1x1 convolution squeezes the network in order to
match the initial number of channels. The steps are shown
in Fig. 4 (source: [11]).

Fig. 4. Inverted residual block.

Because of this inversion, the block has far fewer parame-
ters.

The idea of linear bottleneck is to add a linear output of the

2



last convolution of a residual block to the initial activations.
Therefore, the discard of values that are smaller than 0 and
hence the loss of information is prevented.

As for the non-linear activation functions, the researches
of [11] use ReLU6 instead of ReLU. It limits the value of
activations to a maximum of 6 - between 0 and 6 it is linear.
It might be helpful when it is needed to limit the information
left of the decimal point to 3 bits.

C. EfficientNet

From 2012 on, CNNs have been widely used for a variety
of tasks in deep learning, especially in the field of computer
vision. Due to their wide usage, researchers have been trying
to come up with architectures that can improve accuracy of the
model on different tasks. EfficientNet achieves better accuracy
and efficiency using model scaling.

In context of CNNs scaling can be interpreted with respect
to three factors:

• depth - number of layers,
• width - number of channels in Conv layer,
• resolution - image resolution that is being passed to a

CNN.
If increasing one of scaling factors mentioned above in-

creases model’s accuracy, the effect isn’t linear and effect
saturates quickly as shown of Fig. 5 (source: [12]).

Fig. 5. Scaling Up a Baseline Model with Different Network Width (w), Depth
(d), and Resolution (r) Coefficients. Bigger networks with larger width, depth,
or resolution tend to achieve higher accuracy, but the accuracy gain quickly
saturate after reaching 80%, demonstrating the limitation of single dimension
scaling.

Better accuracy can be achieved using combined scaling
that changes more than one scaling factor. Researchers of [11]
suggested a method called Compound Scaling.

Fig. 6. Compound Scaling method

Value Φ is coefficient that is proportional to how many
resources are available, while α, β and γ tell how to distribute
those resources along network depth, width, and resolution
scaling.

After choosing baseline model those parameters can be
found in two steps procedure:

1) fix Φ = 1 and do a small grid search for α, β, and γ,
2) fix α, β, and γ as constants (with values found in above

step) and change the values of Φ; the different values
of Φ produce EfficientNets B1-B7(Φ = 2 produces
EfficienNetB2 etc.).

III. OUR WORK

Before approaching the training of our models, dataset
was transferred to TFRecords [13] which allowed to exploit
benefits of Tensor Processing Units (TPUs) [14]. TPU is
an application-specific integrated circuit (ASIC), developed
by Google Inc., used to accelerate linear algebra operations
characteristic for machine learning. Relying on TPUs meant
that TensorFlow library [15] would be used in developing of
our models.

Dataset was divided into training subset and testing subset
in 80:20 ratio. To achieve better accuracy as well as stability
and generalization of our models, 4-fold cross validation was
applied. In that way all our examples in the training dataset
were used both in training of our models and in the validation
of our models. Also, by using this approach, results which
were obtained from experimenting with various values of
different hyper-parameters were comparable and we were able
to unambiguously determine which values of certain hyper-
parameters benefit our models accuracy. During the training of
the models, categorical cross-entropy loss function was used
as well as a learning rate scheduler to assure convergence
during the learning process. To boost models’ generalization
capabilities, augmentation was used. More precisely, rotation,
shear, zoom and shift were each applied on the images during
the training process. Furthermore, flipping the images left to
right horizontally was also performed.

Two different models were trained. One model had pre-
trained MobileNetV2 as its baseline model and the other one
used pretrained EfficientNetB0 as its baseline model.

IV. RESULTS

As it was previously mentioned, we have trained two
different models which used different pretrained models as
their baseline models - one with MobileNetV2 model and the
other with EfficientNetB0 model.

First, we trained basic models (row one of Table III) which
consisted of fully convolutional layers of baseline models
and a global average pooling layer (GAP) followed by an
output layer. After that, some basic augmentation (rotation,
shift, shear, zoom and horizontal flip) was added, which
increased the models’ accuracy (Table III). Finally, after some
experimenting, optimal architecture for the model (row three
of Table III) with MobileNetV2 as baseline model proved
to consist of fully convolutional layers of MobileNetV2 fol-
lowed by a GAP layer, a fully connected layer of neurons
with sigmoid activation functions, a dropout layer (so as to
prevent overfitting) and an output layer with softmax activation
function. Similarly, for the second model, optimal architecture

3



proved to consist of a GAP layer appended to the baseline
model followed by two fully connected layers with sigmoid
activation function and an output layer using softmax as its
activation function. As for the first model, a dropout layer
was added between each of the fully connected layers.

Baseline model
Type of model MobileNetV2 EfficientNetB0

basic 63.3% 66.8%
basic + basic aug 70.2% 70.1%

optimized 71.2% 71.7%

TABLE III
4-FOLD CROSS VALIDATION ACCURACY RESULTS

After determining optimal architectures, search for various
hyper-parameters was conducted to determine optimal batch
size (the batch size of 64 provided best results), optimal
parameters of learning rate scheduler as well as optimal
parameters for each of the augmentation techniques applied
to the model. It is worth mentioning that several different
optimizers were used for training such as Stochastic Gradient
Descent (SGD) and Nesterov accelerated gradient, but Adap-
tive Moment Estimation (Adam) resulted in the best outcome.

Baseline model
MobileNetV2 EfficientNetB0

Accuracy 71.2% 71.7%

TABLE IV
ACCURACY ON THE TEST DATASET

As Table IV shows, both optimal models achieved same
accuracy when tested on the examples from the testing dataset.
This indicates that using 4-fold cross validation while training
the models provided stability.

Table V and Table VI show confusion matrices for the
model with MobileNetV2 as its baseline model and the model
with the EffiecientNetB0 as its baseline model respectively.
These tables clearly show that our models were not able to
properly classify two emotions - disgust and fear.

Predicted emotions
neutral happiness surprise sadness anger Acc.

A
ct

ua
l

em
ot

io
ns

neutral 5397 517 109 215 46 85.9%
happiness 784 4620 91 72 15 82.8%
surprise 328 108 760 68 91 56.1%
sadness 871 141 64 900 71 44.0%
anger 188 47 72 41 396 53.2%

disgust 512 50 34 79 59 0%
fear 24 14 96 36 38 0%

TABLE V
CONFUSION MATRIX FOR MOBILENETV2 MODEL

Predicted emotions
neutral happiness surprise sadness anger Acc.

A
ct

ua
l

em
ot

io
ns

neutral 5416 517 123 198 30 86.2%
happiness 725 4681 79 82 15 83.9%
surprise 301 112 801 58 83 59.1%
sadness 875 145 76 888 63 43.4%
anger 192 46 86 38 382 51.3%

disgust 539 56 36 64 48 0%
fear 28 12 101 25 42 0%

TABLE VI
CONFUSION MATRIX FOR EFFICIENTNETB0 MODEL

V. DISCUSSION

At the beginning, the importance of applying augmentation
to images has to be mentioned. By using augmentation the
network is being fed with new images epoch after epoch,
which enables network to learn more and generalize better.
Adding just a little bit of augmentation improves the results
around 3% (EfficientNetB0) and 7% (MobileNetV2). After
many experiments, we found optimal hyper-parameters of
both networks and results gained with those networks were
1% (MobileNetV2) and 1.6% (EfficientNetB0) better than the
results of basic models with basic augmentation.

Results of the test phase were the same as the results of
optimized models from 4-fold cross validation phase. This
could mean that our K-fold cross validation strategy was
quite stable, but another reason why we got these results
could be that distribution of classes in the test set was very
similar to the distribution of training data. It is also noticeable
that MobileNetV2, even though it has almost two times less
parameters than EfficientNetB0 (see Table VII and Table VIII),
performs just slightly worse both in 4-fold cross validation and
test phase.

Layer No. of parameters
MobileNetV2 2,257,984

FC 40,992
Output 231

Total: 2,299,207

TABLE VII
NUMBER OF PARAMETERS OF MOBILENETV2 MODEL

If we take a look at the confusion matrices in Table V and
Table VI, we can see that we have obtained decent results,
but there is one problem: both models are unable to predict
disgust and fear. Considering the fact that these two classes
are among 3 classes that are the least represented ones in
the dataset, it is quite understandable that the model was not
able to learn how to predict them. Both models are very
accurate when it comes to predicting neutral and happiness
(more than 80%), while surprise, sadness and anger are much
harder to classify (around 50%). It is interesting to see that
MobileNetV2 actually performs a bit better at classifying
sadness and anger. Results show that neutral is most often
being confused with happiness, while other emotions except

4



fear are usually confused with neutral. This was expected
as neutral and happiness are 2 most common classes in the
dataset. On the other hand, fear is actually being confused
with surprise quite often.

Layer No. of parameters
EfficientNetB0 4,049564

1st FC 81,984
2nd FC 2,080
Output 231

Total: 4,133,859

TABLE VIII
NUMBER OF PARAMETERS OF EFFICIENTNETB0 MODEL

VI. CONCLUSIONS

In this paper, we utilize two emotion recognition models
based on MobileNetV2 model and EfficientNetB0 model.
Augmentation proved to be very important for reaching better
generalization as it boosted accuracy of basic models from 3%
to 7%.

MobileNetV2 turns out to be a better solution as it provided
almost the same result as EfficientNetB0, although it has
twice less parameters. Actually, it performs even better than
EfficientNetB0 at some particular classes (sadness and anger).

Class imbalance is a significant problem in this dataset. It
is a main reason why two of the classes cannot be predicted
by our models and future work on this project should tackle
this problem. Several approaches can be used, such as using a
custom loss function like weighted categorical cross-entropy
or using Generative Adversarial Network (GAN) in order to
generate more images of the classes which are least repre-
sented in the dataset.

REFERENCES

[1] Cowie, Roddy, Ellen Douglas-Cowie, Nicolas Tsapatsoulis, George
Votsis, Stefanos Kollias, Winfried Fellenz, and John G. Taylor. ”Emotion
recognition in human-computer interaction.” 2001

[2] Jeong, Mira, and Byoung Chul Ko. ”Driver’s Facial Expression Recog-
nition in Real-Time for Safe Driving.” 2018

[3] Krithika L.B, Lakshmi Priya GG, Student Emotion Recognition System
(SERS) for e-learning Improvement Based on Learner Concentration
Metric 2016

[4] Aneja, Deepali, Alex Colburn, Gary Faigin, Linda Shapiro, and Barbara
Mones. ”Modeling stylized character expressions via deep learning.”
2016

[5] Saste, Sonali T., and S. M. Jagdale. ”Emotion recognition from speech
using MFCC and DWT for security system.” 2017

[6] El Ayadi, M.; Kamel, M.S.; Karray, F. Survey on speech emotion
recognition: Features, classification schemes, and databases. 2011

[7] Carrier, P. L., Courville, A., Goodfellow, I. J., Mirza, M., & Bengio, Y.
FER-2013 face database. Universit de Montreal, 2013.

[8] LeCun, Y. Generalization and network design strategies. Conectionism
in perspective, 1989.

[9] Cleaned ExpW Dataset. Retrieved from
https://github.com/markson14/ExpWCleaned

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications“, 2017

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks“, 2018

[12] Mingxing Tan, Quoc V. Le EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks 2019

[13] TFRecord and tf.train.Example. Retrieved from
https://www.tensorflow.org/tutorials/load data/tfrecord

[14] Cloud Tensor Processing Units (TPUs). Retrieved from
https://cloud.google.com/tpu/docs/tpus

[15] TensorFlow. Retrieved from
https://www.tensorflow.org/

5

https://github.com/markson14/ExpWCleaned
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://cloud.google.com/tpu/docs/tpus
https://www.tensorflow.org/

	Introduction
	Related work
	MobileNetV1
	MobileNetV2
	EfficientNet

	Our work
	Results
	Discussion
	Conclusions
	References

