
WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF ELECTRONICS, PHOTONICS AND

MICROSYSTEMS

FIELD OF STUDY: Control Engineering and Robotics

BACHELOR THESIS

TITLE OF THESIS:

ROBOTIZATION OF THE CAPPUCCINO PREPARATION PROCESS WITH

COMPUTER VISION FEEDBACK

AUTHOR:
EMILIA SZYMAŃSKA

SUPERVISOR:
JANUSZ JAKUBIAK, PHD

CONSULTANT:
PROF. JOSIE HUGHES

WROCŁAW 2022

To the CREATE lab team and all E3
students, who supported me on my
coffee adventure and bravely stood up
to the challenge of drinking all the
experimental cappuccinos.

Contents

1 Introduction 3
1.1 Subject overview and analysis . 4
1.2 Thesis outcome . 5
1.3 System design . 5

2 Hardware 7
2.1 General overview . 7
2.2 Equipment . 8

3 Software 15
3.1 General overview . 15
3.2 Robot Operating System pipeline . 15
3.3 Computer vision . 32
3.4 Supplementary software elements . 39

4 Optimization 41
4.1 General overview . 41
4.2 Optimization methods . 42
4.3 Results . 44

5 Conclusions 49

References 51

A Technical drawings of custom 3D elements 55

Chapter 1

Introduction

Food engineering is a science sector that offers a variety of opportunities for possi-
ble improvements in terms of technology integration. Research carried out in this area
requires high repeatability and accuracy in experiments whose main objective is to un-
derstand both the physical and chemical reactions occurring in food or drink prepara-
tion [Jur06, TM09]. Due to the challenges resulting from high stochasticity, automation is
necessary to be applied to as many aspects as possible to reduce the likelihood of external
factors affecting the preparation process. Robotics provides one plausible solution for au-
tomating food production and scientific experiments, allowing for precise repetition as well
as intelligent data capture with further analysis [KKI18, IKK17]. Investigating the foam
creation of powdered hot beverages is one of the tasks in which robots can assist. This
area is of high importance for the drinks industry and consumers [SSM+20, Sch07], with
many studies focusing on the understanding of the foams production and formation. High
complexity and multi-layered dependencies of this process make the resulting foam hard to
assess. Robots analysing and optimizing food have used a variety of evaluation solutions –
user feedback [JHTI20], salinity sensors [SHIH21] or tactile assessment [SIH21, SMCC+19]
– yet there has not been a significant exploration of the use of computer vision as a means
of providing rapid feedback to the food optimization process.

An idea to create a Robot Food Scientist with an ability to automatically prepare
food and drinks with various input parameters, evaluate the output and optimize its
creation emerged. A custom pipeline would be developed to decide on the product quality,
using computer vision to automatically assess predefined properties. Introducing closed-
loop control with local optimization of the preparation and response to undesired food
characteristics would be the last – but not least – stage of the Robot Food Scientist
project. However, a case study with exploration of the black-box optimization techniques
giving an insight into identifying the optimal parameters would need to be examined
beforehand. Cappuccino, being an inexpensive and not highly complex drink, seemed to
be an appropriate starting point.

4 Introduction

1.1 Subject overview and analysis
Cappuccino, a coffee drink originating in Italy, is nowadays served in cafes all around

the world, gaining on popularity since early 1900s. According to the traditional recipe [Cib],
preparation process starts with brewing coffee in a moka pot. Around thirty milliliters
of the final product of this stage (called espresso) is mixed with 60 ml steamed milk and
topped with milk foam, forming a 1-2 cm layer in a 150 ml cup. This foam, namely mi-
crofoam [con20], has quite specific requirements – it should be shiny, slightly thickened,
consisting of minuscule and evenly distributed bubbles.

As the proper preparation demands some dedication, powdered substitute [Hof00] is
a tempting alternative for people with time shortage or those who do not have necessary
equipment and skill. Obtaining the coffee drink is then as simple as pouring hot water
into the cup with powder while stirring. Mixing needs to be continued for some time
to get rid of the powder clumps and to form a satisfactory layer of milk foam. Because
of many simplifications in this case, preparation of powdered version of cappuccino has
been selected as a starting point for exploration in the food sector optimization, with a
prospect for future developments.

Although the aforementioned preparation process is quite straightforward for a human,
implementing its steps with a feedback control loop for an automata turns out to be a
multilayered challenge. Imitating the humanlike stirring motion or the real time powder
clump squishing are just two examples of complicated machine behaviours which are just
a small piece of a wider topic of robotic cooking. There has been some research exploring
robots’ utility in a kitchen [BKK+11, BBR11, SRLS16], however this area still requires
further investigation due to the subject complexity. Senses of taste and smell for machines
are not developed to such an extent as sight and hearing which can already be satisfied
with cameras and microphones, with ongoing exploration towards tactile sensors. Cameras
are widely available, relatively cheap data-gathering devices, therefore the evaluation of
the prepared drinks or meals mainly relies on vision feedback.

It is quite challenging to make the robot adjust its actions while cooking without
longer delays. Balance in sensors positioning in such a way that they do not interfere with
the robot in carrying out its task, and that at the same time they collect all needed data
is not easy to maintain. It may be necessary for the robot to move away or to stop in
the middle of an action to take proper photos. What is more, image processing might
take a while to compute the output, especially if the image quality and resolution are
high. Feeding an artificial neural network without utilizing a dedicated processor – either
Graphic Processing Units or Neural Network Accelerators – may be a reason of the delay
in decision making [LC20].

1.2. Thesis outcome 5

1.2 Thesis outcome
Taking all the above into consideration, a robotic system for cappuccino preparation

was developed. The project was conducted at Computational Robot Design and Fab-
rication Lab (CREATE Lab) at École Polytechnique Fédérale de Lausanne during an
EPFL Excellence in Engineering research program. The laboratory provided necessary
equipment i.a. a robotic arm, microcontrollers, cameras, servos, motors and 3D print-
ers. Because of the simplification reasons and the resources offered by Nestlé S.A., the
study aimed at carrying out experiments with powdered cappuccino. This thesis outlines
the implementation of these stages with division into three main sections: descriptions of
hardware, software and optimization process. After preparing a coffee, the system evalu-
ates it and takes proper actions to improve it if needed. Optimization in search for input
parameters resulting in the best cappuccino was performed as the final step of the study.
Overall, the project consisted of the following stages:

• designing, 3D-printing and arranging the hardware setup,

• programming and testing the work of the robotic arm and other programmable
hardware elements,

• proposing a computer vision approach towards coffee quality assessment,

• adding a closed-loop control,

• creating a software pipeline combining all steps needed to prepare cappuccino,

• carrying out multiple experiments in accordance with various optimization methods.

1.3 System design
Two equally important aspects – software and hardware – needed to be considered

when designing the system. General steps necessary for powdered cappuccino preparation
(Fig. 1.1) led to a designation of the devices included in the project, schematically shown
in Fig. 1.2. Water and powder dispenser were added and automated to allow for efficient
collection of the ingredients. Robotic arm moved the cup between devices, with its multi-
functional end effector handling a stirrer and a camera. Another camera, taking photos
from the side perspective, was placed vis-à-vis water dispenser so that it can monitor the
cup content.

6 Introduction

Figure 1.1 General coffee preparation steps

Figure 1.2 Hardware layout plan with robot path

Chapter 2

Hardware

2.1 General overview

Mother nature equipped humans with two complex manipulators and graspers in a
form of arms and hands. With these tools, parallel tasks can be carried out, reducing the
duration time of some processes. Engineers aim at bio-inspired inventions, some following
the idea of two robotic arms cooperation in their projects [Rob]. As there was one robotic
arm available for this thesis’ implementation, other solutions for parallelisation and mim-
icking humanlike coffee preparation process were developed. Picking up the cup, placing
powdered coffee inside it, stirring while pouring water and coffee evaluation, with possible
further mixing, are the actions a human undertakes to prepare the drink. However, the ma-
nipulator with customised end effector serves only a purpose of a gripper, a camera holder
and a stirrer, leaving a need for water and powder pouring implementation. Ready-bought
boiler and powder dispenser operate purely mechanically – levers have to be pressed to
release the content of the containers. They needed to be automated and added to the
setup along with a controllable water ramp. Auxiliary elements for cups were designed to
make them easier to pick up and to place on the table. Arduino microcontrollers, when
compared to alternatives provided by STMicroelectronics or to microcomputers such as
Raspberry Pi, have relatively low programming complexity (considering Arduino library),
are ready to be programmed in provided IDE after connecting to them with one USB ca-
ble and have a satisfactory cost-effective ratio. Therefore, Arduino Mega (with Adafruit
Motor Shield) and Arduino Uno manage the operation of respectively motors and servos
in the setup. Fusion 360 software was used to model the setup components, later fabri-
cated from PLA material with the use of 3D printers. The whole hardware system – with
corresponding labels – is depicted in Fig. 2.1.

8 Hardware

(a) Top view with labels (b) Side view

Figure 2.1 Hardware layout

2.2 Equipment

2.2.1 Robot and its end effector
UR5 of Universal Robots product line is a 6 degrees-of-freedom collaborative robotic

arm. Due to the force torque sensors incorporated in each joint, encounter of an obstacle
is possible to detect and handle. Because of that, there is no enclosure separating users
from the robot, which saves laboratory space and reduces maintenance costs. Additionally,
when a slight misplacement in setup components occurs while running the robot script,
the whole operation does not have to be terminated – user can correct the element right
away without a risk of a dangerous collision with the robot. This time-saving and safe-
execusion property is a major advantage when compared to non-collaborative industrial
robots.

A variety of grippers are available on the market. Some of them leverage the pressure
difference between environment and internal device air, some aim at utilizing servo-electric
mechanisms. Bioinspired soft and adaptive grippers allow for moving delicate objects,
while solid jaw-like ones may not be a suitable choice in case scuff marks are unacceptable.
A decision on the end effector type depends mainly on the task characteristics. Moving
a cup full of liquid is not feasible with some sorts of graspers and major adjustments
would need to be implemented with regular solutions. These arguments contributed to
designing a custom end effector (Fig. 2.2a, 2.2b). Two parallel claws allow for grabbing a
cup and moving it to a desired location. It is a much simpler – yet sufficient – method in
comparison to clamping graspers. Auxiliary holders (Sec. 2.2.5) were designed to adjust
cups to the carriage method (Fig. 2.2c).

Robot’s circular movement – moveC – operated with a Python script generated in-
explicable jerks and its velocity range did not allow for imitating human’s mixing speed,
therefore a DC motor with attached rod acts as a stirrer. The motor is attached to the end

2.2. Equipment 9

(a) Model (b) Real life photo (c) Real life photo with a cup

Figure 2.2 End effector

effector with two screws, a stirrer holder is clamped on its shaft. The stirring element itself
is a thirteen-centimeter acrylic rod with smaller pieces, broadening its range, super-glued
to the main rod. The motor is operated by M1 pins of Adafruit motor shield mounted on
Arduino Mega microcontroller (Fig. 2.3).

Figure 2.3 Arduino Mega with Adafruit Motor Shield pinout

Logitech C930C web camera, with the resolution of 1080x1920 px, is mounted on the
flat side surface of the end effector. After mixing, the robot needs only to move to the
side and slightly descend to take a photo from the top. It was important to remember
that for this specific device, after running a script sending a request to the web camera to
capture the image, a couple of frames need to be skipped before obtaining a sharp photo.
To reduce the water steam influence on the photos, the lense was covered with a special
anti-fog coating, however it alone could not eliminate the blur effect – software solutions,
explained in Sect. 3.2.3, needed to be added.

10 Hardware

2.2.2 Powder dispenser
Cappuccino powder consists of hydrophilic elements easily absorbing humidity [BMS09],

therefore it was essential to store the powder in a sealed container. Such a ready-bought
container with a dispensing system was supposed to serve a purpose of pouring the pow-
der into the cup, however the initial idea of the robot pushing the lever turned out to be
inefficient. Instead, the dispenser was disassembled and rearranged (Fig. 2.4). A V-slot
aluminum extrusion profile with a standing support holds a stepper motor with a cus-
tomized gear on its shaft. The gear affects the movement of another gear attached to a
rotating platform with dosage containers. It was empirically determined that thirty-three
motor steps result in one dose distribution into the dispensing hole, under which a cup
needs to be placed. The motor, working with 200 rounds per minute speed, is operated
by M3, M4 pins on Adafruit Motorshield connected to Arduino Mega microcontroller
(Fig. 2.3).

(a) Model (b) Real life photo (c) Real life photo zoomed

Figure 2.4 Powder dispenser

2.2.3 Water dispenser
According to Nescafe recommendations, water should have a temperature of 85oC for

cappuccino preparation. A commercially available boiler with temperature regulation had
to be adjusted for the automatic water pouring (Fig. 2.5). Lever opening the valve got
covered with an overlay with a guide hole, through which a nylon cord is passed. The
cord is attached to a pulley screwed to a servo horn. A special mounting element holds
the servo on the stub pipe. However, when running multiple experiments with higher
temperature of water flowing through the valve, screws get looser and the mount does not
keep the servo in fixed position, even with motion limiters at the top part. Unintended
servo movement affects the volume of water poured into the cup. Therefore, adding a cord

2.2. Equipment 11

guide with the cord attached to the bottom part of the boiler allowed for stabilising the
device.

(a) Model (b) Real life photo

Figure 2.5 Water dispenser

Overall, the water dispenser is controlled by PWM on Arduino Uno’s pin 9 (Fig. 2.6)
with a simple principle of operation. The servo is in its off mode by default and is set
to on mode (with specified position) for a desired time interval. In the case of this setup,
the valve is closed for the value of 0 and open for position of 180.

Figure 2.6 Arduino Uno pinout

2.2.4 Ramp
There were several ideas for creating an automated ramp. One of them aimed at placing

a pinion on the stepper motor and composing a rack into the mobile part of the ramp (Fig.
2.7). Motor’s operation would result in channel’s movement along the direction pointed by
the spout. This approach was abandoned due to the complexity of printing such elements
and challenges regarding the design of smoothly cooperating rack and pinion.

A much simpler solution was chosen – a cam is attached to the servo horn, which,
when the shaft rotates, raises the channel on distancers, adjusting the position of its spout

12 Hardware

Figure 2.7 Initial idea of automating the ramp

(Fig. 2.8). The first element, channel, is a composition of two perpendicular partitions with
a spout and a back partition preventing water from flowing to the opposite direction. Back
distancer allows for free motion (pitch) of the channel mounted to it – it is attached to
the vertical column (supported with a cuboid element) with screws. The front distancer
is much wider due to the fact that the servo-operated cam moves over it. Servo, mounted
on a stand, is connected to Arduino Uno on pin 10 (Fig. 2.6) and operated with PWM
signal. In the case if this setup, the ramp is in the highest position for 0 and in its minimal
height for 180, which corresponds to a height difference of about 2 centimeters.

(a) Model (b) Real life photo

Figure 2.8 Ramp

2.2. Equipment 13

2.2.5 Cup rim and positioners
Glass cups used in the project do not have handles, therefore designed rims (Fig. 2.9b,

2.9c) glued to the top part of cups make it easy for the robot to move them to specified
destinations. Special placers ensure accurate positioning in case the element moves within
end effector’s claws. Two positioning rings (for initial and final coordinates) have a circular
base becoming narrower at the bottom (Fig. 2.9a, 2.9c) – it makes the object slide to the
centre when putting it from above. The third positioner (Fig. 2.9a, 2.9d) was designed
with an idea of a cup being moved from the side to the destination coordinates. It is due
to the fact that initially the ramp height was not adjustable – the spout needed to be
higher than the cup but low enough to avoid collision with the end effector when stirring.
Therefore, the object could not be put from above the spot and the desing had to allow
for misplacement elimination. Additionally, one side of the element is trimmed to specified
height to make the contents of the cup visible for the side camera.

(a) Cup positioners - models (b) Cup rim - model

(c) Circular positioner with a cup (d) Side positioner with a cup

Figure 2.9 Cup rim and positioners

14 Hardware

2.2.6 Side camera
Logitech BRIO camera allows for taking full HD images of the side of the cup, used

for foam height measurement and clumped powder detection. The camera is screwed to a
customized stand (Fig. 2.10). As the stand was printed from white filament, its reflection
on the glass cup had negative impact on image analysis. A piece of black cardboard glued
to the front of the mount prevents bright reflections from affecting the results.

(a) Model (b) Real life photo

Figure 2.10 Side camera

Chapter 3

Software

3.1 General overview
Software system of the project consists of three components: Robot Operating System

pipeline, computer vision aspect and bash scripts with microcontroller programs. As the
setup is composed of several devices, each of them to be programmed and controlled,
the need for a data exchange and proper reaction in real time appeared. ROS2 pro-
vides architecture for straightforward nodes’ management and cooperation, therefore two
Python packages were developed – one with interfaces definition (roboccino_intarfaces)
and one with the actual nodes (roboccino). Image processing, incorporated into one of
the nodes, is performed with OpenCV library. Considering lower level, microcontrollers
were programmed in C++ with corresponding Arduino libraries’ methods and functions.
Additionally, a couple of bash scripts and aliases were created to i.e. help the user with
checking if all devices are connected or defining their device names assigned by the operat-
ing system. All the abovementioned programs can be found on a Gitlab repository [Szy21].

3.2 Robot Operating System pipeline

3.2.1 ROS1 vs ROS2
ROS was created to avoid reinventing the wheel each time a robotic software is devel-

oped. Its publisher-subscriber principle of operation could be substituted with separate
programs utilizing e.g. MQTT protocol, however implementing everything from the very
beginning, with lots of debugging on the way, would result in unnecessary time and effort
consumption. Using a provided architecture, with a robotic engineers’ support commu-
nity and a number of tutorials, contributed to creation of two custom roboccino packages,
which are relatively easy to understand and reuse for people familiar with ROS.

The question that appeared after deciding to use Robot Operating System concerned
the choice of ROS version. ROS1 has the advantage of being on the market since 2007, with
lots of stable packages well-tested and maintained. Much more people have experience with
its capabilities and issues, in contrary to ROS2, which had its first release in 2017. The aim
of developing ROS2 was to make major changes in ROS architecture and bug fixes, too

16 Software

many to call it another distribution of ROS1. ROS master elimination, using a different
build system and targeted operating systems are just a few novelties added in ROS2. The
key differences were compared in Tab. 3.1 and eventually ROS2 was selected, mainly due
to its development prospects and launch file implementation in Python. The distribution
used in this project is the latest one (as for summer 2021) – Galactic Geochelone.

ROS1 ROS2

widely known for a long time relatively new
last release supported until 2025 supported at least until 2029
a lot of tools adjusted for ROS tools still being transferred from ROS

to ROS2
API not necessarily the same between one base library (rcl) with similar API

roscpp and rospy between rclcpp and rclpy
(easy to develop rcljava, rclnodejs etc.)

initially targeting C++98 initially targeting C++11 and C++14
initially targeting Python2 initially targeting Python3

freedom in node implementation modular structure for writing a node
launch files in XML launch files in Python

need to run the ROS master nodes are independent and not tight
to a global master

parameters handled by node declares and manages
the parameter server its own parameters
synchronous services asynchronous services
catkin build system ament build system with colcon tool

Ubuntu as a main OS target Ubuntu, MacOS and Windows 10
as OS targets

Table 3.1 Key differences between ROS1 and ROS2

3.2.2 Roboccino interfaces package
A separate supplementary package roboccino_interfaces provides three message types

definitions utilized in roboccino package. The messages are associated with three devices:
stirrer, powder dispenser and water dispenser. They needed to be defined so that the
parameters of certain actions could be adjusted during the pipeline running. Interfaces
can be summed up with Tab. 3.2 with a remark, that all fields are of type uint8.

3.2. Robot Operating System pipeline 17

Message type name Field Meaning
PowderDispenserParams rpm rounds per minute (of a stepper motor)

steps number of steps (of a stepper motor)
WaterDispenserParams on_value servo position of an open valve

off_value servo position of a closed valve
time time (in seconds) for opening the valve

StirringParams time stirring time (in seconds)
speed stirring speed (in range 0-100%)

Table 3.2 Roboccino intarfaces – message types

3.2.3 Roboccino package
Roboccino package consists of ten defined node classes, supplementary enumerated

types, image processing functions (explained further in computer vision section) and
launch files along with parameter assignments. The main idea is to carry out a sequence
of actions presented in the diagram in Fig. 3.1. However, depending on the parameter
passed to the launch file while running it, there are several modes of operation:

• full_closed_loop – the whole sequence with closed loop control is carried out,

• full_single_experiment – the whole sequence is followed excluding the closed
loop actions (for open loop experiments),

• short_closed_loop – closed loop case starting from the situation in which a cup
is ready to be filled with water and finishing the run after preparing a satisfactory
coffee or reaching an ending condition (for quick testing purposes).

• short_single_experiment – open loop case starting from the situation in which
a cup is ready to be filled with water and finishing the run after receiving data from
both cameras (for quick testing purposes).

Three YAML files contain parameters’ values:

• analysis_params – parameters for bubble and clump detectors as well as for foam
height measurement,

• hardware_params – parameters corresponding to hardware elements (dispensers,
cameras, robot, servo and motor shield commanders),

• optimization_params – ramp and stirrer parameters (i.e. inputs for optimization
procedures).

The content of these files is to be changed accordingly to the planned task. Device
names assigned by the operating system or the cameras’ focus should be adjusted once,
right after connecting all pieces of apparatus to the computer. Setting the optimization

18 Software

Figure 3.1 Modes of operation

parameters is done after every run of the pipeline, as specfied by the output of the opti-
mization scripts, or once if a series of coffees prepared with the same parameters needs to
be performed. The actual value assignments can be seen in the repository.

The general idea of the proposed software system design is that the MainController
node receives information about other nodes’ status and publishes suitable commands,
coordinating the operation of hardware elements and image analysis. Both commands
and statuses are of enum type (casted to 8-bit integers when passing over a topic as enum
cannot be a message type in Galactic), to make it easier for debugging and understanding
purposes. Hence, every node class has a corresponding enumerator class with fields indi-
cating stages of operation. The main controller sends a command with the stage name and
it is considered as finished when a node responds with the same message. All of the classes
inherit properties after Node class from ROS Client Library for Python (rclpy) as well as
have an implemented emergency handling. Every node is both a subscriber and a pub-
lisher to error_signal topic. If one of the nodes is about to get killed, launched improperly
or an exception appears, it sends an error signal (of a corresponding ErrorHandling enum
value) so that other running programs finish their operation with a proper log message
printed in the console. This way a situation, in which the pipeline is running without all
the devices functioning properly, will not be let to happen.

Eleven nodes are needed for the system to function, two of which are of the same class
type with remapped topics, therefore a total of ten classes – explained in detail in the
following subsections – are provided by the roboccino package.

3.2. Robot Operating System pipeline 19

MainController

Subscription to all status-like topics and publishing the commands to all hardware-
related nodes make the MainController the most busy and essential element of the pipeline
(Fig. 3.3). The diagram in Fig. 3.2 best describes the steps made by the controller when
running.

Figure 3.2 Diagram of the main controller operation with messages sent to the nodes and
the states of the program

20 Software

Figure 3.3 Roboccino architecture

The node has only two parameters (Tab. 3.3) – mode of operation and maximum
number of iterations.

Parameter name Default value Description
mode_of_operation single_experiment mode defining the goal of the pipeline

max_iter 0 number of maximal iterations of coffee
improvement attempts

Table 3.3 MainController node parameters

The system is shut down if one of following happens:

• the system finishes its task according to the chosen mode of operation,

• any of the nodes stops working properly (throws an exception or is initialized im-
correctly),

• SIGINT signal is sent from the computer (then nodes send the message on er-
ror_signal topic).

In terms of closed loop control, the coffee is served as ready if the image analysis stated it
to be without clumps and with bubble area below threshold or if the number of iterations
of coffee improvement exceeds its limit.

Robot

Robot node is responsible for managing UR5 robotic arm. The operation principle
of this control is based on the Real-Time Data Exchange interface allowing for external
application synchronization with UR robots over TCP/IP connection. Python ur_rtde

3.2. Robot Operating System pipeline 21

API provides three interfaces, of which only Control interface was utilized in the node.
The robotic arm’s tasks consist only of moving it linearly in tool-space or joint-space to
the defined positions, as stirring, dispensing powder or water is controlled by external
tools – therefore there is no need to use a circular motion or operate on IO registers.
Carrying out a task is as simple as running a sequence of moveL and moveJ_IK methods
with path points calculated in robot node’s initialization step. However, it is crucial to
make sure the connection is established in a proper way. On the teach pendant a static
IP option has to be chosen (Fig. 3.4a) and set along with a netmask. On the computer
side, if the robot is not visible after checking the output of ifconfig, IPv4 might need to
be set manually (Fig. 3.4b).

(a) Robot side (b) Computer side

Figure 3.4 IP configuration

Robot node, apart from the error_signal topic, is – as suggested in the roboccino
introduction (Sect. 3.2.3) – subscribed to robot_command and publishes feedback on
robot_status topic (Fig. 3.5).

Figure 3.5 Robot node connections in ROS

To give a good overview on what the parameters of this class are, a path of the robot
is visualised in Fig. 3.6. An enumerator class RobotState describes consecutive robot tasks
bound to the path stages. Path has a predefined shape, but the key positions, on which
tha path calculation is based, can be adjusted and they are passed as the robot class’
parameters.

22 Software

Figure 3.6 Robot path with division to stages

3.2. Robot Operating System pipeline 23

Regarding parametrs, their names, default values and description ars presented in
Tab. 3.4. Their values used in the setup are defined in hardware_parameters.yaml file.

Parameter name Default value Description
robot_ip 192.168.1.20 IP address of the robot
velocity 0.3 m/s robot’s tool speed

acceleration 0.3 m/s2 robot’s tool acceleration
initial_cup_position [0.0,0.0,0.0,0.0,0.0,0.0] B2: tool position in which a cup

[x, y, z, rx, ry, rz](m,rad) is taken from a starting point
under_powder_dispenser [0.0,0.0,0.0,0.0,0.0,0.0] B3: tool position in which a cup

[x, y, z, rx, ry, rz](m,rad) is under powder dispenser valve
under_water_dispenser [0.0,0.0,0.0,0.0,0.0,0.0] E4: tool position in which a cup

[x, y, z, rx, ry, rz](m,rad) is under water dispenser valve
final_position [0.0,0.0,0.0,0.0,0.0,0.0] C12: tool position in which

[x, y, z, rx, ry, rz](m,rad) a cup is in the final point
mixing_depth 0.0 m difference between the tool

position above the cup (C5)
and the mixing position (D5)

clump_mixing_depth 0.0 m difference between the tool
position above the cup (C5)

and clump mixing height (A10)

Table 3.4 Robot node parameters

Camera

There are two nodes of Camera type, as there are two web cameras in use in the setup
– one facing the side of the cup and the other one on the end effector. Therefore the
subscription to camera_command and publishing to camera_state is remapped in the
launch file by adding a prefix – either side or bubble. Additionally, also image topic is
extended with a prefix. Error handling topics stay the same in both cases (Fig. 3.7). All
the node’s parameters are presented in Tab. 3.5.

The camera handler is of VideoCapture type from OpenCV library content. A device
name is needed for initialization, followed by setting the focus, motion-jpeg codec (4-
character code of codec used to compress the frame in a form of ’M’, ’J’, ’P’, ’G’) and
the resolution size (1920x1080 px). As cameras do not have many tasks to carry out, only
two commands of CameraState enum are sent: initialization command and a photo taking
request.

24 Software

Figure 3.7 Web camera nodes connections in ROS

Parameter name Default value Description
device /dev/video0 device camera name assinged by the OS
focus 0 [0; 255] value defining focus level

preprocessing_type none mode of preprocessing (either side or bubble)
waiting_time 0 s value defining time interval of waiting

between reaching the photo position
and taking a photo

skipped_frames 0 number of skipped frames before saving
an image

crop_x 0 px X coordinate of the upper right pixel
needed for cropping

crop_y 0 px Y coordinate of the upper right pixel
needed for cropping

crop_width 0 px width of the cropped image
crop_height 0 px height of the cropped image

Table 3.5 Camera node parameters

There are several steps undertaken when the MainController sends a TAKE_PHOTO
command. First of all, if the device is ready, the node waits for a predefined time interval
of waiting_time. It is necessary in the first iteration of closed loop control experiments as
the water vapour over the hot drink right after pouring affects the photos – they are too
blurred to properly analyze them. Next, a series of photos is captured and skipped, their
number defined by skipped_frames parameter, eventually saving the last image. It is done

3.2. Robot Operating System pipeline 25

due to the fact that the utilized cameras’ first frames after launching the capture mode are
too noisy and devices automatically reduce the noise after a moment. The image is then
saved locally as a PNG file, preprocessed in accordance to the preprocessing_type mode
of operation, converted from OpenCV format to BGR8 and published on image topic. As
for cropping, there are four parameters needed this step. An image can be treated as a
2D array of values, therefore cropping is performed simply as assinging a subarray to a
new variable. This is performed by one line of code:

cropped_image = current_image [y : y+height , x : x+width]

where (x, y) are the coordinates of the upper left pixel of the subarray and (width, height)
define the size (in pixels) of the new image.

ServoCommander

The node is responsible for the serial connection with a microcontroller handling servos
corresonding to the ramp and water dispenser (Fig. 3.8). Two separate nodes exchanging
data with the same microcontroller might create some packet collisions or mysterious er-
rors on the way. Therefore, when the MainController sends a request to change the servo
position, it is passed through the ServoCommander node. The PySerial library serves a
purpose of connection handlers provider. Only two paramters are required to set a commu-
nication bridge – the device name and baud rate (Tab. 3.6). Their initialization happens
after receiving a SerialStatus message on serial_servo_command topic. Afterwards, the
confirmation of the readiness is sent to MainController.

Figure 3.8 ServoCommander node with ramp and water dispenser connections in ROS

26 Software

Figure 3.9 Communication diagram between ROS and the microcontroller

3.2. Robot Operating System pipeline 27

Parameter name Default value Description
device /dev/ttyACM0 uC device name assinged by the OS

baud_rate 9600 bits/s rate at which bits are sent on serial bridge

Table 3.6 ServoCommander node parameters

The procedure of sending data to the microcontroller can be easily explained on the
example of the water dispenser (Fig. 3.9).

1. Desired on and off servo positions with opening time (packed in WaterDispenser-
Params message as in Sect. 3.2.2) are sent from WaterDispenser node to dis-
penser_servo_command, to which ServoCommander is subscribed.

2. Values are packed in a 4-byte packet in form of [WATER_DISPENSER_BYTE,
on_value, off_value, on_time].

3. The packet is sent over the serial connection and the response is received.

4. If the response contains the same values as the desired ones, the confirmation is sent
to water_dispenser_status topic.

Similar procedure is followed for the ramp servo, with topics changed analogously. The
only real difference is in terms of messages and the data packet. Ramp node sends only
the desired servo position of 8-bit unsigned integer type and the packet is as follows:
[RAMP_BYTE, servo_position, 0, 0]. From the microcontroller implementation side, it
was easier to stay with a constant size of the packet and filling bytes with zeros than
to switch between two- and four-byte data. The WATER_DISPENSER_BYTE and
RAMP_BYTE – set as global constants in the code – are used by the microcontroller to
distinguish which servo should be operated at the moment of receiving data.

In case an exception is thrown or a message is received on error_signal topic or the
MainController commands to finish the node operation, it is crucial to close the water
dispenser valve before killing the node. Therefore, a proper data packet is sent just before
destroying the communication socket. Setting the ramp position is not as important then,
because it would not cause any damage to the setup, in contrary to constantly flowing
hot water.

Ramp

Ramp has a simple implementation – apart from standard topics related to error signal
as well as commands and status for MainController it has only one additional publisher
option. When the MainController commands the ramp with RampState message to be set
on some desired height, it sends the servo position on the ramp_servo_command topic.
The node does not send feedback to the ramp_status, as it is done by the ServoCommander
after confirmation that action was actually performed by microcontroller. However, the
feedback is slightly different than in previous cases – it does not match the MainController

28 Software

command, which can be either SET_MIN, SET_MAX, SET_DESIRED. Three cases are
confirmed with SET status, as ServoCommander would need to make distinction between
minimal, maximal and desired heights, which would require further implementation, not
crucial for the overall operation.

The node has three parameters (Tab. 3.7), which are set in optimization_params.yaml
file as the ramp height is one of the inputs to optimization scripts.

Parameter name Default value Description
desired_height 90 servo position correspodning to the ramp

height desired for water pouring
max_height 0 servo position corresonding to the maximal

ramp height
min_height 180 servo position corresonding to the minimal

ramp height

Table 3.7 ServoCommander node parameters

WaterDispenser

Managing the water dispenser is analogical to the case of the ramp. After receiving a
DispenserState command of POUR value, the node packs time, on and off servo positions
to WaterDispenserParams message and sends it to ServoCommander, which is then re-
sponsible for sending feedback to MainController. It is important to mention that in the
hardware_params.yaml the time, for which the valve should be open, is a double value
with the accuracy of 0.5. It is multiplied by 2 and casted to integer when the parameter is
imported to the node, as passing a double is harder to implement on both sides of serial
communication. Microcontroller, after receiving the data packet, divides the time value
by 2, this way obtaining the initial desired time.

The parameters of this node are presented in Tab. 3.8.

Parameter name Default value Description
time 2.5 s time interval for which the valve should be

open to fill the cup with water
on 180 servo position corresonding to the maximal

ramp height
off 0 servo position corresonding to the minimal

ramp height

Table 3.8 ServoCommander node parameters

MotorShieldCommander

The implementation of MotorShieldCommander assumes that a microcontroller man-
aging the powder dispenser and the stirrer is connected via USB to the computer and

3.2. Robot Operating System pipeline 29

that serial communication can be established. As in the case of the ServoCommander,
it did not make sense to create serial connections to the same device in separate nodes.
Topics serial_motor_command and serial_motor_status connect the node to the Main-
Controller, while error handling is performed with standard error_signal (Fig. 3.10). The
parameters are the same as for ServoCommander (Tab. 3.9), as only device name and
baud rate are necessary for the communication.

Figure 3.10 MotorShieldCommander node with stirrer and powder dispenser connections
in ROS

Parameter name Default value Description
device /dev/ttyACM1 uC device name assinged by the OS

baud_rate 9600 bits/s rate at which bits are sent on serial bridge

Table 3.9 MotorShieldCommander node parameters

The procedure of operating a motor can be shown on an example of powder dispenser:

1. Desired rpm and steps of the stepper motor packed in PowderDispenserParams
message (Sect. 3.2.2) are sent from PowderDispenser node to
dispenser_motor_command, to which MotorShieldCommander is subscribed.

2. Values are packed in a 3-byte packet in form of [POWDER_DISPENSER_BYTE,
rpm, steps].

3. The packet is sent over the serial connection and the response is received after the
motor action is performed.

30 Software

4. If the response contains the same values as the desired ones, the confirmation is sent
to powder_dispenser_status topic.

Analogically, operating the DC motor of the stirrer is performed. Its parameters are passed
in a StirrerParams message type and the packet is of a form of [STIRRER_BYTE, stir-
ring_time, speed]. As the stirring speed is sent as a 0-100% value, it is here calculated
to correspond to [0; 255] range. POWDER_DISPENSER_BYTE and STIRRER_BYTE
are set as global constants in the code and are used by the microcontroller as a distin-
guisher which motor to operate.

PowderDispenser

PowderDispenser, subscribed to powder_dispenser_command and publishing to ow-
der_dispenser_status with DispenserState enum messages, is responsible for sending proper
information on the dispenser_motor_command. Its rounds per minute and number of
steps parameters (Tab. 3.10) correspond to full dispensation of a portion of powdered
coffee.

Parameter name Default value Description
rpm 10 round/m stepper motor speed used to dispense powder
steps 34 number of steps required to dispense powder

Table 3.10 PowderDispenser node parameters

Stirrer

Apart from the elements typical for this system design (meaning error signal han-
dling, StirrerStatus information exchange with MainController and passing motor opera-
tion data to the MotorShieldCommander), Stirrer needed an implementation for changing
stirring parameters. The initial values of stirring time and speed (Tab. 3.11) are imported
from optimization_params.yaml file, but during the pipeline running stirring can be per-
formed more than once in closed loop control mode. Therefore, new parameters based on
the image analysis are published on stirring_params topic and saved by the Stirrer node
for further operation.

Parameter name Default value Description
speed 10 % DC motor speed while stirring
time 10 s stirring time

Table 3.11 Stirrer node parameters

3.2. Robot Operating System pipeline 31

ImageAnalyzer

ImageAnalyzer differs from the hardware-related nodes. First of all, it does not have
a topic over which the MainController passes its commands and on which the status is
published in response. It does, however, have the standard connection to error_signal.
Due to the subscription to bubble_image and side_image, it has access to photos taken
by the cameras.

After receiving an image on one of the topics, it is processed in accordance with the
computer vision analysis described in detail in Sect. 3.3. Figures with cropped image,
bubble and clump detection and bubble area analysis are saved in terms of top foam
image. As for the side photo, apart from the cropped version, clumps detected in liquid and
foam measurement figures are stored. Information received from stirrer_motor_command
allows for naming the saved processed images with values of stirring time and speed as
suffixes. If both side and top photos got analyzed, the decision procedure is launched. It
checks several cases of the coffee state, publishes a proper message over decision topic
and – if needed – forwards stirring parameters packed to StirringParams message to
stirring_params topic. In case the decision making procedure receives incorrect inputs or
an error occurs, information is sent to error_signal topic.

The following variables are utilized in the algorithm (cf. Alg. 1):

• Tclumps [s] – predefined time prescaler used to calculate the new stirring time in the
case of clump detection (in the current program version equal to 60 seconds),

• Tbubbles [s] – predefined time prescaler used to calculate the new stirring time in the
case of high bubble coverage (in the current program version equal to 60 seconds),

• Sclumps [%] – predefined speed prescaler used to calculate the new stirring speed
in the case of clump detection (in the current program version caluclated speed is
equal to the initial speed),

• Sbubbles [%] – predefined speed prescaler used to calculate the new stirring speed in
the case of high bubble coverage (in the current program version caluclated speed
is equal to the initial speed),

• thr [%] – threshold corresponding to the boundary between acceptable and unac-
ceptable bubble coverage in the foam part (passed as a node parameter),

• aliquid [%] – area occupied by clumped powder in the liquid part,

• afoam [%] – area occupied by clumped powder in the foam part,

• abubbles [%] – area occupied by bubbles in the foam part,

• d – variable indicting the decision, of Decision enum type.

Almost all parameters of this node, placed in analysis_params.yaml, refer to the image
analysis, therefore their meaning is explained in Sect. 3.3. The only parameter partici-
pating in the decision making procedure is good_coffee_threshold. Its value defines the

32 Software

maximum area occupied by the bubbles in the top image that is still considered as a
determinant of a satisfactory coffee.

Algorithm 1 An algorithm of decision making by the ImageAnalyzer node
Require: Tclumps > 0, Tbubbles > 0, Sclumps > 0, Sliquid > 0, aliquid ≥ 0, afoam ≥ 0,

abubbles ≥ 0, thr > 0
if aliquid > 0% then

d← LIQUID_CLUMPS

tstirring ← Tclumps · aliquid/100%
sstirring ← Sclumps · aliquid/100%

else if afoam > 0% then
d← FOAM_CLUMPS

tstirring ← Tclumps · afoam/100%
sstirring ← Sclumps · afoam/100%

else if abubbles ≤ thr then
d← READY

else if abubbles > thr then
d← BIG_BUBBLES

tstirring ← Tbubbles · abubbles/100%
sstirring ← Sbubbles · abubbles/100%

end if

3.3 Computer vision
Human eyes combined with the analysis performed in the brain are a highly complex

real-time system giving quick feedback on the surroundings and allowing for proper reac-
tion. Scientists aim at making machines see the world as people do and respond to the
occuring situations. Computer vision [Hua96], also reffered to as CV, is the field, whose
development made it possible for the computers to mimic human vision by extracting some
high-level information of the environment from digital images [Ros88]. Some of the tasks
carried out by the CV are object detection [Zou19], classification [DKD15, GL10], motion
analysis [CL08, CBK+21] or image restoration [XWD13]. By applying several transforma-
tions to an array of pixels, complex real world scene is changed into a numerical value (e.g.
object sizes) or a symbolic information (e.g. shape or texture of the elements). There are
a lot of challenges facing this scientific field [Zha10] – analysis of high resolution images
takes a lot of computation time and resources, while humans perform it unconsciously,
without much focus – therefore new methods are constantly looked for and developed.

In this project the robotic system needs feedback on the coffee quality. The develop-
ment of the data extraction on each of these aspects – mainly in forms of detections and
classifications – is explained further in this section. Initially, five factors were taken into
consideration as determinants of good coffee – presence of powder clumps in the liquid,
presence of powder clumps in the foam, foam height, number and sizes of bubbles.

3.3. Computer vision 33

It is crucial to remember that image analysis is highly depenedant on the light distri-
bution in the room. To achieve high repeatability in running multiple experiments, the
setup was covered with black fabric and a light ring with dispersion cover was placed
over the photo taking area. Different light colours were tested (Fig. 3.11), but the most
important aspect of the light was to make it uniformly distributed rather than to have
a specific color. When trying to disperse the light source, it turned out that the output
colors were not intensive enough for the photos to differ much, therefore the white light
was chosen due to the higher availability on the market, especially considering possible
research continuation.

Figure 3.11 Artificial light colors test

3.3.1 OpenCV

OpenCV is an open-source library providing tools for real-time optimized Computer
Vision. It supports a variety of programming languages, so its Python implementation
was used in the system. The library has a community support, plenty of introductory
tutorials, is well integrated with many Python tools and is commonly used in computer
vision applications. An attempt to utilize Matlab CV tools was initially made, however
calling its functions in Python with Matlab Enginge API consumes more computational
time when running [MHB12]. Additionally, OpenCV has the advantage of being free, while
Mathworks software requires a license. Taking all into conisderation, OpenCV seemed to
be a reasonable software package and was eventually chosen as a basis for coffee analysis
(with one function taken from scikit-image library).

3.3.2 Bubble detection

Bubbles are detected on images taken from the top view of the cup. The resolution
of these photos is 1920x1080 px. Various tools and transformations were examined and
compared before determining the final detector.

Initial ideas

The initial approach was to detect the number and sizes of bubbles as circles in the
foam. Before realising how much time Matlab consumes for simple operations and how

34 Software

little of parameter tuning can be performed, a few iterations of testing its functions was
done (Fig. 3.12).

Figure 3.12 Matlab circle detection functions for coffee foams of low and high quality

Circles detection was later implemented with OpenCV. Tested Hough circle transform
with Hough gradient method (Fig. 3.13) is in general not complicated to apply, however
it has two parameters (gradient value used to handle edge detection and accumulator
threshold value for the Hough gradient method) that turned out to be difficult to tune
for images.

Figure 3.13 Parameter tuning for Hough circle detection – testing different parameters
configurations with the results in a form of pairs <input image, circle detection> with
displayed detected circles’ number and mean diameter in pixels

One of the possible reasons of not detecting all bubbles was the fact that not every
bubble has a circular shape – some of them are deformed or more eliptic. Hence, the blob
detection was investigated. In OpenCV – apart from area and thresholds – circularity,

3.3. Computer vision 35

inertia and convexity can be adjusted, making it a very good detector for bubbles, which
in fact can be seen as dark blobs in the foam. This approach was eventually decided
to have the best and the most accurate results, so it was used in the final detector.
Instead of number of bubbles and their sizes, the overall area occupied by the blobs is the
determinant of the readiness of the coffee.

Artificial neural networks, so widely applied to lots of computer vision problems nowa-
days, were considered as an alternative way of analysing coffee quality. Supervised learning
however would require a training dataset – no ready and relatable datasets were found
on the internet and making one would result in lots of time spent on labelling. Moreover,
the task would not be a simple classification problem as feedback on whether the coffee
is ready or not is not enough – the information on the quality level is necessary. Unsu-
pervised or reinforcement forms of learning would also be problematic to implement or
insufficient in terms of their feedback, therefore the idea of using neural networks was
abandoned.

Final detector

The final detector is a combination of three stages of blob detection. Different trans-
forms in various combinations – by trial and error – were tested while seeking for the
efficient sequence with tuned parameters and the image analysis pipeline presented in
Fig. 3.14 gave the best results.

Figure 3.14 Bubble detection pipeline

The first subdetector takes the cropped image and performs the blob detection with
paramters of Detector 1 in Tab. 3.12. The second subdetector in the first place applies a
median blurring with kernel size equal to 7, performs K-means clustering with k = 8 and
then applies a blob detection with values of Detector 2 in Tab. 3.12.

The last stage of blob detection starts with converting image into grey scale. After
median blurring with k=7, adaptive thresholding is applied with the following properties:

• if pixels are above the therhold value, they are assigned with 255 value,

36 Software

• binary thresholding with threshold value as the mean of neighbourhood area (size
of pixel neighbourhood equal to 11 and constant substracted from the mean as 2).

Parameter name Detector 1 Detector 2
minimum threshold 10 10
maximum threshold 200 200
minimum convexity 90% 90%
maximum convexity 100% 100%

minimum area 10 px 400 px
maximum area 115200 px 115200 px

Table 3.12 Blob detectors’ parameters

In contrary to previous cases, blob are found with a function from scikit-image library.
Difference of Gaussian [Sci] method with the maximum standard deviation for Gaussian
kernel equal to 20 and a lower bound for scale space maxima of 0.5 value were chosen for
this specific case.

After all three detections are done, they are merged and converted to an image with
white background and grey mask, on which black pixels indicate the presence of the blob.
This way, even if the same bubbles were detected by all three methods, the repetition
does not affect the result – black pixels cover the same area. The ratio of black pixels
to white pixels is calculated and changed to percentage data, which is later passed to
decision procedure and optimization scripts.

3.3.3 Foam height measurement
Measuring the foam height was eventually not considered in closed-loop control and

optimization. The main reason for that was small diversity of heights – coffees of both
satisfactory and poor quality had a similar-looking side foam photographs. However, as it
might change in further research, the computer vision pipeline (Fig. 3.15) was developed
for this purpose.

Figure 3.15 Foam height measurement pipeline

Several attempts of method adjustment were performed (Fig. 3.16), also in terms of
determining the most reliable statistical indicator of the foam height, mainly considering
mean and mode.

3.3. Computer vision 37

Figure 3.16 Foam height measurement tests to assure versatility, presented in a form
of sets <input image, preprocessed image, detected edges> with a mean and mode of
measured heights above the last image

The final method, obtained after assuring that it does not return unreasonable values
in any of the test images, consisted of six steps. Once the upper part of the side image
is cropped, it is converted to grey scale. Consecutive erosion and dilation with kernel
of size 3 reduce the noise in the photo. Finally, Canny edge dectection with (10, 120)
hysteresis procedure parameters is applied. In each image column, starting the bottom,
difference between closest white pixels is calculated. The foam height is a mean of all
these differences.

The challenges that appeared during this part of analysis are Canny edge detection
parameter’s high sensitivity to the light and water condensation on the glass that creates
noise in the image. Therefore, it is important to check if the parameters are well tuned
before running experiments and that the height measurement starts from the bottom of
the photo.

3.3.4 Clump detection

OpenCV offers three gradient filters which could help in clump detection – Laplacian,
vertical Sobel and horizontal Sobel filters. Sobel tranforms seemed very promising in the
first iteration (Fig. 3.17), however, after further processing, Laplacian proved to be the
most suitable indicator of clumps (Fig. 3.18).

To make it easier to analyze, after grayscaling and filtering with Laplacian, pooling
is performed. For side image 10x10 window, for 30x30 window is passing through the
image and the sum of absolute values is caluclated. The output of such a transformation

38 Software

Figure 3.17 First test of gradient transforms

Figure 3.18 Further analysis of clumps and comparison of the methods

is then thresholded – pixels above a trial-and-error-obtained value indicate the presence
of a powder clump. The percentage area occupied by the clump is calculacted and re-
turned to the decision making program. The pipelines for clump detection are depicted
in Fig. 3.20, 3.19.

Figure 3.19 Clump in the foam detection pipeline

3.4. Supplementary software elements 39

Figure 3.20 Clump in the liquid detection pipeline

3.4 Supplementary software elements

3.4.1 Bash scripts

Several bash scripts and aliases are a part of the Roboccino repository. As the ROS
pipeline manages some devices whose parameters need to be passed to configuration files,
scripts checking the connection to the robot and the device names of both microcontrollers
and cameras were created. Corresponding alias check_devices launches these scripts
with the example effect in Fig. 3.21. It is much faster and easier to use than checking the
device separately with multiple commands.

Figure 3.21 The result of evoking check_devices alias in the command line

Running init_coffee navigates the user to the ROS workspace with roboccino pack-
age, builds the packages and sources the local setup bash script. It makes the pipeline
simpler to use for people less familiar with ROS. Additionally, instead of calling:

$ ros2 launch robocc ino system_bringup . launch . py \
mode:={mode_of_operation}

every time, aliases in .bashrc file allow for running the command of the same name as
the chosen mode of operation. Therefore, running the experiment right after opening the
terminal – assuming that in the meantime configuration files are changed accordingly –
looks as follows:

$ check_devices
$ i n i t _ c o f f e e
$ s ing l e_exper iment_fu l l

40 Software

3.4.2 Microcontroller programs
Programs for both microcontrollers utilized in the system are written in C++ language

with the use of Arduino library. Its user-friendly structure and relatively low entry thresh-
old allow for quick implementations without going very low level, which is redundant in
the project.

Arduino Uno

Servo library allows for setting the desired position using Pulse Width Modulation.
Arduino Uno controls two servos – one from water dispenser on pin 9 and the other one
corresponding to the ramp on the pin 10. After receiving four bytes over serial commu-
nication, it checks which device is indicated by the first byte. In the case of ramp, the
second byte is the desired servo position, so the proper signal is written on the pin. If
the device is the water dispenser and if the on/off values are within correct range, then
another condition is checked. If on and off values are equal, then simply this value is
set on the pin, without specified duration time. It is mainly used for switching the water
dispenser off. However, if the values are different, then the time interval received in the
packet is divided by 2 (as explained in Sect. 3.2.3), on value is written on the pin and
after the specified time the pin is set as off. Finally, if everything was performed properly,
received packet is sent back to the computer.

Arduino Mega

Arduino Mega controls DC and stepper motor with the help of Adafruit Motor Shield,
therefore the Adafruit_MotorShield and Adafruit_MS_PWMServoDriver packages are
needed for the program. Stirrer is attached to the M1 pin, while the powder dispenser is
operated by M3, M4 pins. After receiving three bytes on serial connection, the selection
of the device is checked. If the data packet conserns the powder dispenser, the stepper
motor is made to do a number of steps specified by the message with the defined speed.
The motor moves backwards with the DOUBLE mode of opration. After performing the
task, the motor is released.

In the case stirrer needs to operate, it is run forward with a defined speed. Several
delays are called before releasing the motor. It is important to run delays in a loop, because
if the time value is too high, passed to the function will be considered as an argument
diverging to infinity – the stirrer will not stop functioning.

In both cases, the packet is sent back to the computer as feedback.

Chapter 4

Optimization

4.1 General overview
Finding the input parameters of the system that give the best output is an objec-

tive of optimization procedure. The question that was asked in this project was: Which
method to use when optimizing the powdered hot drink preparation?. Before trying to an-
swer that, inputs and the black-box function’s output needed to be determined. There
are plenty of factors affecting the powdered coffee preparation – ambient temperature,
humidity, stirring motion etc. Various tests were carried out before deciding on the op-
timization’s inputs. Not everything can be easily controlled, so for this setup only three
simply changeable parameters with high impact on the bevarage quality are taken into
consideration:

• water pouring height h – corresponding to the [0;180] ramp servo positions, however
for [90;180] positions height does not change much, so only the range of [0;90] is
considered,

• stirring time t – with values between 10 and 60 seconds making the most sense to
check,

• stirring speed s – in range 0-100% of DC motor’s speed, where reasonable values
are between 50% and 100%.

The black-box function’s Q(t, s, h) output of the coffee preparation is in the form of
a percentage value of area a occupied by the bubbles in the top foam image (Fig. 4.1),
being a quality criterion in the case of cappuccinos. The aim of the optimization is to find
the minimum of this function. In total, three optimization techniques were explored in
this study – Bayesian optimization, Tree-structured Parzen Estimator and grid Bayesian
optimization. All of them are run with a corresponding script from the Gitlab reposi-
tory [Szy21].

The optimization procedure is similar in all cases:

1. A script suggests a set of input parameters to be tested.

2. An operator changes the parameters in roboccino package configuration files.

42 Optimization

3. Coffee is made and evaluated.

4. The output of the evaluation is put by the operator as feedback to the optimizting
program.

5. Another set of input parameters is suggested.

Figure 4.1 Foam quality dependence on the bubble coverage

4.2 Optimization methods

4.2.1 Bayesian optimization
Bayesian optimization’s objective is usually to find the global maximum of a black-

box function without any assumptions regarding its functional form [Ngu19]. This method
operating on the Bayes Theorem treats the examined function as random and puts a prior
probability distribution over it. After receiving evaluation data, the prior is accordingly
updated and the posterior distribution is formed, which contributes to the creation of an
acquisition function pointing out the next query point. The more observations are provided
for the optimizer, the more confident the algorithm becomes regarding profitability of
certain parameter regions exploration. The Bayesian approach is preferable for cases in
which the evaluation of the function is expensive or hard to perform.

The Bayesian optimization has its ready-to-use implementation in Python [Nog14].
There are various methods that determine the prior/posterior distribution over the black-
box function and a method using Gaussian process is used in this case. Upper Confidence

4.2. Optimization methods 43

Bound as the acquisition function with κ = 8 and xi = 0.1 result in preference of explo-
ration, whereas the case of κ = 10 and xi = 0.0 is more in favour of exploitation. As the
implemented Bayesian optimization seeks to maximize the output, the problem is in a
form of (4.1), because the smaller the bubble area, the better coffee is.

f(t, s, h) = 100%−Q(t, s, h) (4.1)

4.2.2 Tree-structured Parzen Estimator optimization
This technique is as well a sequential model-based optimization, however the distri-

butions of observations are modelled using Parzen Etimators [BBBK11]. In contrary to
Gaussian-process based methods which would model P (a | (t, s, h)), in TPE P ((t, s, h) | a)
and P (a) are determined in the computation process. Generative process of parameters
is accordingly transformed, distributions of the configuration prior with non-parametric
densities are replaced to obtain the probability equal to P ([t, s, h] | a).

Hyperopt Python library [Hyp13, BYC13] provides tools for easy TPE optimization
usage. It has an option to determin the seek for the minimum of the black-box function,
therefore the problem can be written as in (4.2).

f(t, s, h) = Q(t, s, h) (4.2)

4.2.3 Grid Bayesian optimization
The grid Bayesian optimization is a custom method using the same general idea as

Bayesian optimization described in Sect. 4.2.1, however one simplification is added. Only
predictions for water pouring height and stirring speed are made. For suggested pairs of
parameters, stirring is performed for T = {15, 30, 45, 60} seconds. The best result out of
these four cases is fed into the optimizer and the next set of parameters is returned. Pa-
rameter number reduction was hoped to speed up the process of convergence in parameter
space exploration. The examined function can be defined as in (4.3).

f(s, h) = 100%−Q(T, s, h) (4.3)

44 Optimization

4.3 Results

In total, about two hundred coffees have been prepared while performing experiments.
All the results concerning prepared coffees are plotted on the Fig. 4.2. It is evident that
for the stirring speed lower than 60% and mixing time below 30 seconds the coffee quality
distinctly drops. The highest condensation of low bubble area outputs is in the region of
stirring for 30-50 seconds and with speed above 80%. Considering water pouring height, it
is hard to indicate a trend – it may be due to the need of a greater number of experiments,
narrow height range or low bubble area dependence on this parameter.

Figure 4.2 Experiments results in relation to area covered by bubbles (in %)

To check how stochastic the preparation process is, variance of coffees prepared with
the random input parameters has been tested (Fig. 4.3) and proved to be of acceptable
magnitude. However, it later became apparent that some of the results can have variance
of much greater value, which final comparison depicts in Fig. 4.5.

4.3. Results 45

Figure 4.3 Foam variance

Four series of experiments have been performed – two for Bayesian optimization, one
for TPE and one for grid Bayesian, all depicted in Fig. 4.4. In the case of Bayesian
optimization, one additional series with κ = 10 and xi = 0.0 was carried out to check the
behaviour of the optimizer.

Figure 4.4 Bubble area in the coffees throughout the experiments – two Bayesian opti-
mizations, TPE optimization and grid Bayesian optimization

The sets of parameters resulting in the best coffee found by each of the method, along
with the human-made coffee have been repeated a couple of times and compared (Fig. 4.5).
Additionally, a random optimization process was performed – the best result was added
to the comparison.

46 Optimization

Figure 4.5 Comparison of the best results obtained by the each parameter search method

It is visible at a glance that a human-prepared coffee is much better than one made with
a robotic setup with open loop control. Although TPE provided some cases with very low
bubble area, a very high variance came with it. Taking everything into consideration, it is
hard to choose the best optimization method at this point as none of them fully converged
to the best solution. Further experiments would be needed to verify the correctness of the
techniques’ outputs.

The effects of adding a closed-loop control can be observed in Fig. 4.6. A trend of
coffee quality increase (in terms of both clump elimination and bubble coverage decrease)
can be seen in consecutive iterations (with some exceptions).

No search in optimal determination of stirring speed and time in consecutive loop
runs was performed as it is a much more complex task – it is impossible to have the
same optimization’s starting point after initial mixing, which is proven by coffee high
variance as in Fig. 4.3. However, it can be seen that multiphase mixing on a different
height depending on the clump detection positively affects cappuccino’s quality.

4.3. Results 47

Figure 4.6 Examples of closed loop control iterations

Chapter 5

Conclusions

The goal of this thesis was to develop a system for robotized coffee preparation. Achiev-
ing the goal required to design, 3D print and compose a hardware system, program it,
apply computer vision to closed loop control and carry out experiments with search for
the optimal input parameters. Cappuccino was the case study analyzed in the project,
with its powdered substitute eventually used to prepare hot drinks. The initial problem
investigation defined the tasks of the robotic setup – it had to allow for picking up a cup,
collecting the powder, stirring while pouring the water and evaluation of the cappuccino
quality. After subject overview, the hardware elements were designed and composed from
commercially available products (such as UR5 robot, microcontrollers, cameras) and 3D
printed parts. The robot with its custom end effector, water and powder dispenser, stirrer,
cup rims, positioners and water ramp made it possible for carrying out the actions leading
to objective completion. The next step was to implement the software system. Apart from
programming the work of the robotic arm and other programmable hardware elements,
the software had to contain image analysis for coffees assessment and closed-loop con-
trol for multiphase improvement. It was all wrapped in ROS2 Python architecture, with
some auxiliary bash scripts and microcontrollers’ programs in C++. The final stage of
the project consisted of experiments. Optimization methods for black-box functions were
explored, series of tests planned and executed with applied optimization techniques. The
results of the optimal parameters search were analyzed and conclusions on the optimal
process parameters to obtain the best coffee were presented.

Created system met the requirements defined in the study objective – cappuccino is
prepared in an automated and parameterized way, which is helpful with carrying out
multiple experiments. If the state of the drink is classified as not satisfactory, the robot
performs additional mixing in accordance to the output of computer vision pipeline. As
microfoam is the desired output, milk foam assessment is based on the percentage of
bubble area in the image taken from the above the cup. High stochasticity – visible in
redoing coffees with the same input parameters – negatively affects the exact repeatabil-
ity characteristics and disturbes the optimization procedure. Nevertheless, the computer
vision feedback was proven to be a valuable component of the system. Blob detection
and adaptive thresholding were the main tools determining it. However, clumped powder
in both top and side images also needed to be detected and eliminated in closed loop

50 5. Conclusions

control, so Laplacian transform with pooling were used in the corresponding part of the
software. Initially foam layer height was also supposed to be taken into consideration,
but it turned out to be not necessary – its values did not differ much between high and
low quality bevarages. OpenCV library was easily imported and utilized in the custom
ROS package, making it a suitable tool for data analysis. Apart from stand-alone coffee
evaluation, image processing made it possible to improve the bevarage by foam bubbles
reduction and powder clumps elimination.

The final step was to perform an optimization in search for input parameters resulting
in the best cappuccino. Water pouring height, mixing speed and stirring time affected
the formation of the milk foam, therefore they were considered as input parameters for
Bayesian, Tree-Structured Parzen Estimator and grid Bayesian optimization methods.
Although it is not yet possible to point out the best optimization method, a delicate
trend regarding the good input parameters can be seen. Best coffees were made with
stirring time around 30-50 seconds and mixing speed near 80-100%. It is hard to observe
a tendency in water pouring height - the reason for that may be a small range of available
heights (maximum difference was about 2 cm).

Further experiments would be needed to clarify trends for input-output relation. How-
ever, apart from tests, some improvements could be added to extend the project. Wider
range of water pouring height, total setup separation from external factors (such as vary-
ing temperture or humidity in the lab) and exploration in higher DC motor’s input voltage
might positively affect the system’s operation. A task, that may be interesting to inves-
tigate, but also hard to put into action, would be optimization for closed-loop control.
It would require low variance in coffee preparation, so development of system elements
in terms of exact repeatability would be necessary to undertake. Different approaches to-
wards image processing could be tested and compared - perhaps a better solution would
appear.

Taking all the above into consideration, a major conclusion emerged – it is highly chal-
lenging to implement actions that a human performs without much focus or dedication.
Although many simplifications (such as substituting classic cappuccino with its powdered
version) were applied, it still took a lot of time to construct and program the setup, which
is not even close in efficiency to human vision analysis and continuous closed-loop control.
Plenty of scientists encounter this barrier and hopefully progressive research in robotics
will soon propose a solution bringing us closer to achieving high effectiveness.

References

[BBBK11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

[BBR11] Mario Bollini, Jennifer Barry, and Daniela Rus. Bakebot: Baking cookies
with the pr2. In The PR2 workshop: results, challenges and lessons learned
in advancing robots with a common platform, IROS, 2011.

[BKK+11] Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz
Mösenlech-ner, Dejan Pangercic, Thomas Rühr, and Moritz Tenorth. Robotic
roommates making pancakes. In 2011 11th IEEE-RAS International Confer-
ence on Humanoid Robots, pages 529–536, October 2011. ISSN: 2164-0572.

[BMS09] E.M. Becker, L.S. Madsen, and L.H. Skibsted. Storage stability of cappuccino
powder. Milchwissenschaft, 64:413–417, 01 2009.

[BYC13] James Bergstra, Daniel Yamins, and David Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. In Sanjoy Dasgupta and David McAllester, editors, Proceedings
of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 115–123, Atlanta, Georgia,
USA, 17–19 Jun 2013. PMLR.

[CBK+21] Apeksha Chipade, Pallavi Bhagyawant, Pratiksha Khade, Rajshri C. Ma-
hajan, and Vibha Vyas. Computer vision techniques for crowd density and
motion direction analysis. In 2021 6th International Conference for Conver-
gence in Technology (I2CT), pages 1–4, 2021.

[Cib] Cibo360. Cappuccino – Italian recipe. https://www.cibo360.it/
alimentazione/cibi/caffe/cappuccino.htm. Accessed: 2021-10-30.

[CL08] Yaohuan Cui and Chang Woo Lee. Vision-based human motion analysis for
event recognition. In 2008 Second International Symposium on Intelligent
Information Technology Application, volume 2, pages 263–267, 2008.

[con20] Wikipedia contributors. Microfoam — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/Microfoam, 2020. Accessed: 01-July-
2021.

https://www.cibo360.it/alimentazione/cibi/caffe/cappuccino.htm
https://www.cibo360.it/alimentazione/cibi/caffe/cappuccino.htm
https://en.wikipedia.org/wiki/Microfoam

52 References

[DKD15] J. Dorner, Š. Kozák, and F. Dietze. Object recognition by effective methods
and means of computer vision. In 2015 20th International Conference on
Process Control (PC), pages 198–202, 2015.

[GL10] Kristen Gauman and Bastian Leibe. Visual Object Recognition. Morgan &
Claypool Publishers, 2010.

[Hof00] W Hoffmann. Characterization of cappuccino powders. Kieler Milch-
wirtschaftliche Forschungsberichte, 52:165–174, 01 2000.

[Hua96] Thomas S. Huang. Computer vision: Evolution and promise. 1996. Presented
at 5th International Conference on High Technology.

[Hyp13] Hyperopt: Distributed hyperparameter optimization python library. https:
//github.com/hyperopt/hyperopt, 2013. Accessed: 2021-08-30.

[IKK17] Jamshed Iqbal, Zeashan Hameed Khan, and Azfar Khalid. Prospects of
robotics in food industry. Food Science and Technology, 37:159–165, 2017.

[JHTI20] Kai Junge, Josie Hughes, Thomas George Thuruthel, and Fumiya Iida. Im-
proving robotic cooking using batch bayesian optimization. IEEE Robotics
and Automation Letters, 5(2):760–765, 2020.

[Jur06] AC Juriaanse. Challenges ahead for food science. International journal of
dairy technology, 59(2):55–57, 2006.

[KKI18] Zeashan Hameed Khan, Azfar Khalid, and Jamshed Iqbal. Towards realizing
robotic potential in future intelligent food manufacturing systems. Innovative
food science & emerging technologies, 48:11–24, 2018.

[LC20] Rich Lee and Ing-Yi Chen. The time complexity analysis of neural network
model configurations. In 2020 International Conference on Mathematics and
Computers in Science and Engineering (MACISE), pages 178–183, 2020.

[MHB12] Slavomir Matuska, Robert Hudec, and Miroslav Benco. The comparison of
cpu time consumption for image processing algorithm in matlab and opencv.
In 2012 ELEKTRO, pages 75–78, 2012.

[Ngu19] Vu Nguyen. Bayesian optimization for accelerating hyper-parameter tuning.
In 2019 IEEE Second International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE), pages 302–305, 2019.

[Nog14] Fernando Nogueira. Bayesian Optimization: Open source constrained
global optimization tool for Python. https://github.com/fmfn/
BayesianOptimization, 2014. Accessed: 2021-08-30.

[Rob] Moley Robotics. Moley world’s first robotic kitchen. https://www.moley.
com. Accessed: 2021-10-30.

[Ros88] A. Rosenfeld. Computer vision: basic principles. Proceedings of the IEEE,
76(8):863–868, 1988.

https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://www.moley.com
https://www.moley.com

References 53

[Sch07] Harald Schuchmann. Product design for coffee based beverages. Product
Design & Engineering, 2, 2007.

[Sci] Blob detection methods in scikit-image python library. https:
//scikit-image.org/docs/stable/auto_examples/features_
detection/plot_blob.html. Accessed: 2021-10-30.

[SHIH21] Grzegorz Sochacki, Josephine Hughes, Fumiya Iida, and Simon Hauser.
Closed-loop robotic cooking of scrambled eggs with a salinity-based
‘taste’sensor. International Conference on Intelligent Robots and Systems,
2021.

[SIH21] Grzegorz Sochacki, Fumiya Iida, and Josephine Hughes. Compliant sen-
sorized testing device to provide a model-based estimation of the cooking
time of vegetables. 16th International Conference On Intelligent Autonomous
System, 2021.

[SMCC+19] Luca Scimeca, Perla Maiolino, Daniel Cardin-Catalan, Angel P. del Pobil,
Antonio Morales, and Fumiya Iida. Non-destructive robotic assessment of
mango ripeness via multi-point soft haptics. In 2019 International Conference
on Robotics and Automation (ICRA), pages 1821–1826, 2019.

[SRLS16] Aykut Satici, Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano. A
coordinate-free framework for robotic pizza tossing and catching. In 2016
IEEE International Conference on Robotics and Automation (ICRA), pages
3932–3939, 05 2016.

[SSM+20] Deotale Shweta, Dutta Sayantani, JA Moses, VM Balasubramaniam, and
C Anandharamakrishnan. Foaming characteristics of beverages and its rele-
vance to food processing. Food Engineering Reviews, 12(2):229–250, 2020.

[Szy21] Emilia Szymańska. Roboccino gitlab repositories: cappuccino preparation
robotic system. https://gitlab.com/roboccino, 2021.

[TM09] Hely Tuorila and Erminio Monteleone. Sensory food science in the changing
society: Opportunities, needs, and challenges. Trends in Food Science &
Technology, 20(2):54–62, 2009.

[XWD13] Yuan-nan Xu, Jing Wang, and Yan-bing Dong. Mixed norm-based image
restoration using neural network. In 2013 IEEE International Conference on
Green Computing and Communications and IEEE Internet of Things and
IEEE Cyber, Physical and Social Computing, pages 1957–1961, 2013.

[Zha10] Bo Zhang. Computer vision vs. human vision. In 9th IEEE International
Conference on Cognitive Informatics (ICCI’10), page 3, 2010.

[Zou19] Xinrui Zou. A review of object detection techniques. In 2019 International
Conference on Smart Grid and Electrical Automation (ICSGEA), pages 251–
254, 2019.

https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_blob.html
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_blob.html
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_blob.html
https://gitlab.com/roboccino

Appendix A

Technical drawings of custom 3D
elements

In this appendix, technical drawings of all custom 3D designed elements are attached.

56 A. Technical drawings of custom 3D elements

Units mm Drawing No 1
Material PLA Scale 1:2
Date 30.08.2021 Element name Gripper base
Created by Emilia Szymańska Project name End effector

56

162.9
51.8

27.917.9

33.6

90

R20

3

5.
5

93.7

49

A

A (1:1)

Ø28

3xØ4.5

10

Ø10

14

21

109.1

49

2x
14

1.6
°

3xØ6.5

R32.5

25

43
.5

21

6

50

10

All filleting is of value 2.5mm

57

Units mm Drawing No 2
Material PLA Scale 2:1
Date 30.08.2021 Element name Stirrer holder
Created by Emilia Szymańska Project name End effector

18

Ø3.
5

1.7
1.7

5.3

Ø10.5

26
.8

8.
8

R3.3

R2.4

R4 1.6

14
17

8

4

58 A. Technical drawings of custom 3D elements

Units mm Drawing No 3
Material PLA Scale 1:1
Date 30.08.2021 Element name Dispenser base
Created by Emilia Szymańska Project name Powder dispenser

17

4

24
.6

60

60

1317

Ø6.5

9

7.5

5

30

R1.5

8.
5

Trapezoidal convex elements are
of the same dimensions

59

Units mm Drawing No 4
Material PLA Scale 1:1
Date 30.08.2021 Element name Stepper motor holder
Created by Emilia Szymańska Project name Powder dispenser

50
20.5

4

9

Ø6.5

43

9

16.5

R1.5

21.5

8.
5

24

32

Trapezoidal convex elements
are of the same dimensions

60 A. Technical drawings of custom 3D elements

Units mm Drawing No 5
Material PLA Scale 1.5:1
Date 30.08.2021 Element name Gear
Created by Emilia Szymańska Project name Powder dispenser

28

15
9

7.6

28

R2

R1

2xØ3
3

5.3

R2.5
R7

12

4
11

Gear parameters:
· pitch diameter 24 mm
· pressure angle 20 deg
· root fillet radius 5 mm
· gear thickness 9 mm
· hole diameter 11 mm
· teeth number 12

61

Units mm Drawing No 6
Material PLA Scale 1:1.5
Date 30.08.2021 Element name Stepper motor mount
Created by Emilia Szymańska Project name Powder dispenser

72

R5

Ø6
Ø6

42
23

10

5.5

6

36
.5

21

31

R2

R5

5.36.3

R3

24
.3

28
.5

32
.7

18.5
34

4xØ4.5

62 A. Technical drawings of custom 3D elements

Units mm Drawing No 7
Material PLA Scale 1:1
Date 30.08.2021 Element name Lever overlay
Created by Emilia Szymańska Project name Water dispenser

Ø3.5

R4 R1.5
3.

5
48.6

22

6

4.3

8.5

5

15
.2

2.
6

10
.2

2.
53.3

42

15

63

Units mm Drawing No 8
Material PLA Scale 1:1
Date 30.08.2021 Element name Pulley
Created by Emilia Szymańska Project name Water dispenser

Ø20.5

Ø7

R4

2

3.
5

Ø
33

1
10

1

12.7

5

7.1

1

12
.8

7
6.1

64 A. Technical drawings of custom 3D elements

Units mm Drawing No 9
Material PLA Scale 1:1
Date 30.08.2021 Element name Servo mount
Created by Emilia Szymańska Project name Water dispenser

R8.8

R11.5

12

R1.530

Ø2.5

4

2.
1

10
16.5

4

12

38

2x
Ø4.5

14

22.4

2xØ
3.5

69

44

20

15

2

4

26

4.5

27.5

28.8

65

Units mm Drawing No 10
Material PLA Scale 2:1
Date 30.08.2021 Element name Lower clamp band
Created by Emilia Szymańska Project name Water dispenser

R8.8
R11.5

2.
411

11.3

2x
Ø

4.
5

32.5

40

3.8
12

66 A. Technical drawings of custom 3D elements

Units mm Drawing No 11
Material PLA Scale 1:1
Date 30.08.2021 Element name Cam
Created by Emilia Szymańska Project name Ramp

3

40

60

2

21

Ø3.5

8

4

11

20

20

R20

67

Units mm Drawing No 12
Material PLA Scale 1:2.5
Date 30.08.2021 Element name Water channel
Created by Emilia Szymańska Project name Ramp

56.6

5

2

45

31.7

10

14
7.

7

17
6

7.1

15
1.

3

17
6

645
.4

23.8
8 11

2.
1°

28.3

68 A. Technical drawings of custom 3D elements

Units mm Drawing No 13
Material PLA Scale 1.5:1
Date 30.08.2021 Element name Upper distancer
Created by Emilia Szymańska Project name Ramp

Ø2

25
5.

3

74°

7.
5

2.1

21

3.
2

42

3.
8

5

69

Units mm Drawing No 14
Material PLA Scale 1:1
Date 30.08.2021 Element name Back distancer
Created by Emilia Szymańska Project name Ramp

42

25

3.
2

21

40

70 A. Technical drawings of custom 3D elements

Units mm Drawing No 15
Material PLA Scale 1:2
Date 30.08.2021 Element name Column
Created by Emilia Szymańska Project name Ramp

4xR10
16

6

Ø2

8 4
5

20

35

6

5 5

71

Units mm Drawing No 16
Material PLA Scale 1:1
Date 30.08.2021 Element name Servo column
Created by Emilia Szymańska Project name Ramp

19

2xØ3.5

6

61

4.
5

4.5
40

26

10
11

3.5

10

72 A. Technical drawings of custom 3D elements

Units mm Drawing No 17
Material PLA Scale 1:2
Date 30.08.2021 Element name Cup rim
Created by Emilia Szymańska Project name Cup rim

R7.5

R62.7

R50.3

6

10

80.9
15.4

5

90
°

40.5

73

Units mm Drawing No 18
Material PLA Scale 1:1.5
Date 30.08.2021 Element name Positioning ring
Created by Emilia Szymańska Project name Positioning ring

Ø80.5

23
.6

12

Ø56.5

40.3

74 A. Technical drawings of custom 3D elements

Units mm Drawing No 19
Material PLA Scale 1:2
Date 30.08.2021 Element name Cup positioner
Created by Emilia Szymańska Project name Cup positioner

12

R38.5

R28.5

20

50.1

9.1

43
.5

10

100.3

82

75

Units mm Drawing No 20
Material PLA Scale 1:1
Date 30.08.2021 Element name Camera stand
Created by Emilia Szymańska Project name Camera stand

48

Ø7

R10

R8

20

40

12

32

6

6
6

	Introduction
	Subject overview and analysis
	Thesis outcome
	System design

	Hardware
	General overview
	Equipment

	Software
	General overview
	Robot Operating System pipeline
	Computer vision
	Supplementary software elements

	Optimization
	General overview
	Optimization methods
	Results

	Conclusions
	References
	Technical drawings of custom 3D elements

