
Lab assignment 4

ETH Zurich, Computer Science Department

Computer vision

Report

Object Recognition

Author
Emilia Szymańska, 22-945-547

November 2022

The objective of this lab assignment was to implement bag-of-words image classifier to decide whether
a test image contains a car or not and to develop a CNN-based image classification network on CIFAR-10
dataset for multi-class image classification.

1 Bag-of-Words classifier

1.1 Implementation
1.1.1 Feature detection - feature points on a grid

First we have to define the nPointsX · nPointsY grid points. As we need to omit the borders in
all directions, I run a function to get nPointsX evenly spaced numbers over an interval from border
to (width − border − 1). I perform a similar operation on Y axis case and then get an array of (x, y)
coordinates created from the permutation of the previously obtained linspace vectors.

The code implementation of this part is presented below:

1 h , w = img . shape
2 x_vector = np . l i n s p a c e (border , w−border −1, num = nPointsX , dtype=in t)
3 y_vector = np . l i n s p a c e (border , h−border −1, num = nPointsY , dtype=in t)
4 g r id = np . meshgrid (x_vector , y_vector)
5 gr id_stacked = np . s tack ((g r id [0] , g r i d [1]) , ax i s=−1)
6 vPoints = np . reshape (grid_stacked , (nPointsX∗nPointsY , 2))

1.1.2 Feature description - histogram of oriented gradients

To calculate Histograms of Oriented Gradients (HOG), for each grid point we take 4x4 cell set, where
each cell contains 4x4 pixels. We take gradients (in Y and X directions) corresponding to the currently
inspected cell and calculate the magnitude

√
gradX2 + gradY 2 and angle arctan(gradY, gradX) (con-

verted later to degrees) of the gradient resulting from Y and X gradients. As np.arctan2 function returns
values from −Π to Π I added 360o to the negative angles to have the interval from 0 to 2Π. Then I
calculated the histogram on the angles matrix with 8 bins over the (0o, 360o) range, where the weights
corresponded to the magnitude. Each set of histograms corresponding to one cell needed to be concate-
nated before adding to the resulting descriptor, which is then of size (nPointsX · nPointsY)x(4 · 4 · 8).

The code implementation of this part is presented below:

1 . . .
2 gradx_sl i ced = grad_x [start_y : end_y , start_x : end_x]
3 grady_sl i ced = grad_y [start_y : end_y , start_x : end_x]
4
5 x_squared = np . square (gradx_sl iced , dtype=f l o a t)
6 y_squared = np . square (grady_sl iced , dtype=f l o a t)
7 added = np . add (x_squared , y_squared , dtype=f l o a t)
8
9 mag = np . sq r t (added)

10 ang_neg = np . degree s (np . arctan2 (grady_sl iced , gradx_sl i ced))
11 ang = np . where (ang_neg < 0 , ang_neg+360 , ang_neg)
12
13 h i s t , b in s s = np . histogram (ang , b ins=nBins , range =(0 ,360) , weights=mag)
14 desc . append (h i s t)
15 . . .

1.1.3 Codebook construction

Codebook construction function required only adding the utilization of the previously defined functions
(for grid points and HOG descriptor computation) and adding the result to the list of all features for all
images.

The code implementation of this part is presented below:

1

1 . . .
2 vpo int s = gr id_points (img , nPointsX , nPointsY , border)
3 v f ea tu r e = descr iptors_hog (img , vpoints , ce l lWidth , c e l lH e i gh t)
4 vFeatures . append (v f ea tu r e)
5 . . .

1.1.4 Bag-of-Words histogram

To receive the Bag-of-Words activation histogram, it was necessary to first find nearest neighbors
(from K-means centers) for each of the descriptors. Then I computed histogram based on vector of
indices corresponding to the nearest neighbors for each descriptor.

The code implementation of this part is presented below:

1 . . .
2 idx , d i s t = f indnn (vFeatures , vCenters)
3 h i s to , _ = np . histogram (idx , b ins=vCenters . shape [0])
4 . . .

1.1.5 Processing a directory with training examples

Similarly to codebook construction, in create_bow_histograms function we just need to properly use
the previously defined functions to obtain BoW histograms for each image (calculate grid points, extract
descriptors, compute BoW histograms and add it to the set of all images’ histograms).

The code implementation of this part is presented below:

1 . . .
2 vpo int s = gr id_points (img , nPointsX , nPointsY , border)
3 f e a t u r e s = descr iptors_hog (img , vpoints , ce l lWidth , c e l lH e i gh t)
4 h i s t = bow_histogram (f ea tu r e s , vCenters)
5 vBoW. append (h i s t)
6 . . .

1.2 Nearest Neighbor Classification
The last part required finding the nearest neighbors (from BoW for both positive and negative images)

for the given histogram and on this basis return the corresponding image label.
The code implementation of this part is presented below:

1 . . .
2 IdxPos , DistPos = f indnn (histogram , vBoWPos)
3 IdxPos , DistNeg = f indnn (histogram , vBoWNeg)
4 i f (DistPos < DistNeg) :
5 sLabe l = 1
6 e l s e :
7 sLabe l = 0
8 re turn sLabel

1.3 Results
I selected k = 10 and numiter = 10 and on the first run on Colab I obtained 88% and 96% accuracies

for positive and negatives images respectively. However, when running locally on the computer, these
accuracies with the same parameters dropped to 71% and 64% (Fig. 1). As K-means chooses the centers
randomly at the beginning, it can be due to chance that in the first case they reached the correct values
by 10th iteration and in the second they did not.

2

((a)) Accuracies when run on Colab ((b)) Accuracies when run locally.

Figure 1: Bag-of-Words accuracy checks.

2 CNN-based Classifier

2.1 Implementation
2.1.1 A Simplified version of VGG Network

In accordance to the simplified VGG network description, the following architecture was implemented:

1. 2D Convolution Layer: 3 input channels, 64 output channels, kernel of size 3, stride equal to 1,
padding equal to 1 (size change: 3x32x32 → 64x32x32).

2. 2D Max Pooling: kernel of size 2, stride equal to 2, padding equal to 0 (dimensions change: 64x32x32
→ 64x16x16).

3. 2D Convolution Layer: 64 input channels, 128 output channels, kernel of size 3, stride equal to 1,
padding equal to 1 (dimensions change: 64x16x16 → 128x16x16).

4. 2D Max Pooling: kernel of size 2, stride equal to 2, padding equal to 0 (dimensions change:
128x16x16 → 128x8x8).

5. 2D Convolution Layer: 128 input channels, 256 output channels, kernel of size 3, stride equal to 1,
padding equal to 1 (dimensions change: 128x8x8 → 256x8x8).

6. 2D Max Pooling: kernel of size 2, stride equal to 2, padding equal to 0 (dimensions change: 256x8x8
→ 256x4x4).

7. 2D Convolution Layer: 256 input channels, 512 output channels, kernel of size 3, stride equal to 1,
padding equal to 1 (dimensions change: 256x4x4 → 512x4x4).

8. 2D Max Pooling: kernel of size 2, stride equal to 2, padding equal to 0 (dimensions change: 512x4x4
→ 512x2x2).

9. 2D Convolution Layer: 512 input channels, 512 output channels, kernel of size 3, stride equal to 1,
padding equal to 1 (dimensions change: 512x2x2 → 512x2x2).

10. 2D Max Pooling: kernel of size 2, stride equal to 2, padding equal to 0 (dimensions change: 512x2x2
→ 512x1x1).

11. Linear layer: 512 input features, 128 output features.

12. ReLU function application.

13. Dropout with probability of 0.5.

14. Linear layer: 128 input features, 10 output features.

The code implementation of this part is presented below:

3

1 l a y e r s = []
2
3 l a y e r s . append (nn . Conv2d (in_channels=3, out_channels=64, ke rne l_s i z e =3, s t r i d e =1,

padding=1)) # 3x32x32−>64x32x32
4 l a y e r s . append (nn . MaxPool2d (ke rne l_s i z e =2, s t r i d e =2, padding=0)) # 64x32x32−>64

x16x16
5
6 l a y e r s . append (nn . Conv2d (in_channels=64, out_channels=128 , ke rne l_s i z e =3, s t r i d e =1,

padding=1)) # 64x16x16−>128x16x16
7 l a y e r s . append (nn . MaxPool2d (ke rne l_s i z e =2, s t r i d e =2, padding=0)) # 128x16x16−>128

x8x8
8
9 l a y e r s . append (nn . Conv2d (in_channels =128 , out_channels=256 , ke rne l_s i z e =3, s t r i d e

=1, padding=1)) # 128x8x8−>256x8x8
10 l a y e r s . append (nn . MaxPool2d (ke rne l_s i z e =2, s t r i d e =2, padding=0)) # 256x8x8−>256x4x4
11
12 l a y e r s . append (nn . Conv2d (in_channels =256 , out_channels=512 , ke rne l_s i z e =3, s t r i d e

=1, padding=1)) # 256x4x4−>512x4x4
13 l a y e r s . append (nn . MaxPool2d (ke rne l_s i z e =2, s t r i d e =2, padding=0)) # 512x4x4−>512x2x2
14
15 l a y e r s . append (nn . Conv2d (in_channels =512 , out_channels=512 , ke rne l_s i z e =3, s t r i d e

=1, padding=1)) # 512x2x2−>512x2x2
16 l a y e r s . append (nn . MaxPool2d (ke rne l_s i z e =2, s t r i d e =2, padding=0)) # 512x2x2−>512x1x1
17
18 l a y e r s . append (nn . F lat ten ())
19 l a y e r s . append (nn . Linear (in_fea ture s=fc_layer , out_features =128))
20 l a y e r s . append (nn .ReLU())
21 l a y e r s . append (nn . Dropout (p=0.5))
22 l a y e r s . append (nn . Linear (in_fea ture s =128 , out_features=c l a s s e s))
23
24 s e l f . model = nn . Sequent i a l (∗ l a y e r s)

2.2 Results
After running the training for 50 epochs, we can see the accuracy and loss changes in Fig. 2. The test

result accuracy was equal to 81% (Fig. 3), which is an acceptable level of accuracy.

((a)) Loss during training ((b)) Accuracy value during training

Figure 2: Tensorboard screenshots.

4

Figure 3: Test result.

5

	Bag-of-Words classifier
	Implementation
	Feature detection - feature points on a grid
	Feature description - histogram of oriented gradients
	Codebook construction
	Bag-of-Words histogram
	Processing a directory with training examples

	Nearest Neighbor Classification
	Results

	CNN-based Classifier
	Implementation
	A Simplified version of VGG Network

	Results

