
Computer Vision – Image Segmentation

Emilia Szymańska

November 2022

1 Mean shift algorithm

The mean shift algorithm consists of three steps: calculating the distances be-
tween each point and all points, applying a Gaussian kernel function and updat-
ing the analyzed point position. To get the distances, I pass the difference be-
tween the point and the vector of all other points as the argument to torch.norm

function. Then I utilize the formula k(x) = exp(−x2

2h2) (where h is the bandwidth
and x is the distance between points) to apply the Gaussian function. Finally,
I compute the weighted mean

∑
i wixi/

∑
i wi for i points, where the weights

correspond to the distances between points and x is the feature we are consid-
ering (in our case we needed to compute the weighted mean three times as we
have 3 elements to describe a point). This weighted mean is the updated point
position. Code implementation is presented below.

The normalization term of Gaussian distribution does not affect the final
output, as in the weighted mean calculation it would cancel out anyway (we
could take it out before the sums in both the denominator and numerator).

I did not implement the vectorization of inputs – it is supposed to be simple,
but I do not know how to do it in PyTorch (unless I find the solution before the
deadline and manage to upload it).

def d i s t anc e (x , X) :
return torch . norm(x [None , :]−X, p=2, dim=1)

def gauss ian (d i s t , bandwidth) :
return torch . exp(− torch . square (d i s t)/(2∗ bandwidth ∗∗2))

def update po int (weight , X) :
weights sum = torch .sum(weight)
wx sum1 = torch .sum(weight ∗ X[: , 0])
wx sum2 = torch .sum(weight ∗ X[: , 1])
wx sum3 = torch .sum(weight ∗ X[: , 2])
x1 = wx sum1 / weights sum
x2 = wx sum2 / weights sum
x3 = wx sum3 / weights sum
return torch . Tensor ([x1 , x2 , x3])

1

