
Lab assignment 6

ETH Zurich, Computer Science Department

Computer vision

Report

Condensation tracker

Author
Emilia Szymańska, 22-945-547

December 2022

The objective of this lab assignment was to implement a CONDENSATION tracker based on color
histograms and to run experiments to test the influence of the parameters for different types of videos on
the performance.

1 CONDENSATION Tracker Based On Color Histograms

1.1 Color histogram
The first step was to calculate the normalized histogram of RGB colors within the defined bounding

box. I slice the frame in accordance to the minimum and maximum coordinates provided as our bounding
box description. Then I separate the RGB channels and for each of them I calculate the color histogram
with the provided number of bins. Lastly, I normalize the histograms by diving them by their sums and
create an output array containing histograms for three channels.

The code implementation of this part is presented below:

1 de f co lor_histogram (xmin , ymin , xmax , ymax , frame , hist_bin) :
2
3 s l iced_img = frame [ymin : ymax , xmin : xmax]
4
5 red_channel = sl iced_img [: , : , 0] . f l a t t e n ()
6 green_channel = sl iced_img [: , : , 1] . f l a t t e n ()
7 blue_channel = sl iced_img [: , : , 2] . f l a t t e n ()
8
9 hist_red , _ = np . histogram (red_channel , b ins=hist_bin)

10 hist_green , _ = np . histogram (green_channel , b ins=hist_bin)
11 hist_blue , _ = np . histogram (blue_channel , b ins=hist_bin)
12
13 hist_red = hist_red /np . sum(hist_red)
14 hist_green = hist_green /np . sum(hist_green)
15 hist_blue = hist_blue /np . sum(hist_blue)
16
17 h i s t = np . array ([hist_red , hist_green , h i s t_blue])
18
19 re turn h i s t

1.2 Deriving A matrix
The state we consider is in form:

s = {x, y, ẋ, ẏ} (1)

where x, y represent the center of the bounding box and ẋ, ẏ are the velocities in x and y directions.
Therefore, for no motion prediction model we do not want to change the values of the input vector, so A
should be an identity matrix.

When we consider the constant velocity motion model, we want to add ẋ, ẏ to x, y respectively.
Therefore the matrix A is of form:

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (2)

1.3 Propagation
This function propagates the particles given the system prediction model (matrix A) and the system

model noise parameters in accordance to equation s′ = As + w. First I define A matrix for both cases
as well as the noise vector which is a normal distribution with the given sigma (varying for position and
velocity values). New particles are computed by multiplying the matrix A with old particles and adding
the noise vector. Finally, I make sure that the new particles lie within image dimensions.

The code implementation of this part is presented below:

1

1 de f propagate (p a r t i c l e s , frame_height , frame_width , params) :
2
3 i f params [' model '] == 0 : # no motion
4 A = np . i d e n t i t y (2)
5 w = np . t ranspose (np . random . normal (0 , params [' s igma_posit ion '] , s i z e=

p a r t i c l e s . shape))
6 e l s e : # motion with const ve l
7 A = np . array ([[1 , 0 , 1 , 0] , [0 , 1 , 0 , 1] , [0 , 0 , 1 , 0] , [0 , 0 , 0 , 1]])
8 w = np . t ranspose (np . random . normal (0 , [params [' s igma_posit ion '] , params ['

s igma_posit ion '] , params [' s igma_veloc i ty '] , params [' s igma_veloc i ty ']] ,
s i z e=p a r t i c l e s . shape))

9
10 new_part ic les = np . dot (A, np . t ranspose (p a r t i c l e s)) + w
11 new_part ic les = np . t ranspose (new_part ic les)
12
13 new_part ic les = np . where (new_part ic les < 0 , 0 , new_part ic les)
14
15 f o r part in new_part ic les :
16 i f part [0] > frame_width −1:
17 part [0] = frame_width−1
18 i f part [1] > frame_height −1:
19 part [1] = frame_height−1
20
21 re turn new_part ic les

1.4 Observation
In the observe() function, for each particle I calculate the bounding box corners’ minimum and maxi-

mum coordinates (and make sure they lie within the frame. Then I calculate the color histogram for this
bounding box and later I compute the weight in accordance to the formula:

w =
1√
2πσ

e−
χ2(CHs,CHtarget)

2

2σ2 (3)

I store all the weights in a list and once I compute them for all the particles, I create a numpy array
from them and normalize them.

The code implementation of this part is presented below:

1 de f observe (p a r t i c l e s , frame , bbox_height , bbox_width , params_hist_bin , h i s t ,
params_sigma_observe) :

2 height , width , _ = frame . shape
3
4 norm_term = 1/(math . s q r t (2∗math . p i) ∗params_sigma_observe)
5 weights = []
6
7 f o r part in p a r t i c l e s :
8 x_max = in t (part [0]+bbox_width //2)
9 x_min = in t (part [0] −bbox_width //2)

10 i f x_max > width −1:
11 x_max = width−1
12 i f x_min < 0 :
13 x_min = 0
14
15 y_max = in t (part [1]+ bbox_height //2)
16 y_min = in t (part [1] − bbox_height //2)
17 i f y_max > height −1:
18 y_max = height −1
19 i f y_min < 0 :
20 y_min = 0
21
22 hist_observed = color_histogram (x_min , y_min , x_max, y_max, frame ,

params_hist_bin)

2

23
24 w = norm_term ∗ math . exp(−(chi2_cost (hist_observed , h i s t) ∗∗2) /(2∗

params_sigma_observe ∗∗2))
25 weights . append (w)
26
27 weights = np . array (weights)
28 weights = weights /np . sum(weights)
29
30 re turn weights [: , None]

1.5 Estimation
In this step, I compute the estimate of the mean state, which is a sum of the product of particles and

their weights.
The code implementation of this part is presented below:

1 de f e s t imate (p a r t i c l e s , part i c l e s_w) :
2 re turn np . sum(part ic l e s_w ∗ pa r t i c l e s , ax i s =0)

1.6 Resampling
Finally, in accordance to the particles’ weights, I randomly select new particles. The corresponding

weights need to be normalized before being returned.
The code implementation of this part is presented below:

1 . . .
2 de f resample (p a r t i c l e s , part i c l e s_w) :
3 chosen_ids = np . random . cho i c e (np . arange (p a r t i c l e s . shape [0]) , p a r t i c l e s . shape

[0] , p=part ic l e s_w . f l a t t e n ())
4
5 chosen_par t i c l e s = np . take (p a r t i c l e s , chosen_ids , ax i s =0)
6 chosen_partic les_w = np . take (part ic les_w , chosen_ids , ax i s =0)
7 chosen_partic les_w = chosen_partic les_w/np . sum(chosen_partic les_w)
8
9 re turn chosen_part i c l e s , chosen_partic les_w

10 . . .

2 Experiments

2.1 Video 1
The first video runs with the tracker as presented in Fig. 1 for no motion model and Fig. 2 for constant

velocity model. It can be seen that the tracker manages to follow the top part of the hand, which was
selected for tracking, however it was more noisy for the constant velocity model. The blue trajectory
corresponds to a priori mean state and the red trajectory to a posteriori mean state.

Figure 1: Result of running the tracker with no motion model on the video nr 1 (tracking the hand).

3

Figure 2: Result of running the tracker with constant velocity model on the video nr 1 (tracking the
hand).

2.2 Video 2
The second video’s objective is to track a hand, which at some point is occluded by another object.

This time I was supposed to vary the parameters to obtain the final tracking (Fig. 3). I run the video
for different σ values and modes of operation (Fig. 5, 4). The tracking had better results for constant
velocity model – for no motion model the correct tracking was usually stopped when encountering the
occluding obstacle. Increasing σposition resulted in highly "scattering" behaviour, but decreasing it made
the tracker prefer states without almost any movement. With high σvelocity, the tracker performed big
steps between frames, the opposite happening for low σvelocity values. As for measurement noise, using
a high σobserve resulted in a priori and a posteriori trajectories to be almost exactly the same, therefore
not following the object. Significantly decreasing σobserve, however, will also not be a solution - the
trajectories are also chaotic (although more accurate than in the other case).

Figure 3: Tracking the hand on the video nr 2.

(a) No motion (b) No motion (c) Constant velocity (d) Constant velocity

Figure 4: Comparison of no motion and constant velocity model for the tracker on video nr 2.

4

(a) High σposition (b) Low σposition (c) High σvelocity (d) Low σvelocity

(e) High σobserve (f) Low σobserve

Figure 5: Comparison of σ magnitudes for velocity, position and observation for video nr 2.

2.3 Video 3
In my case, plugging the parameters from the video nr 2 to the video nr 3 did not allow for tracking

the ball (Fig. 6) – the tracker got "stuck" after the ball changed its direction of movement. I needed to
tune the parameters to make it possible to properly follow the ball’s movement (Fig. 7). The comparison
for σposition values for this video yields similar results to the σposition varying of video nr 2 – it affects
the "willingness" to change the position of the center of the bounding box. It is however slightly harder
to spot the difference here when varying σvelocity – we can see that with a lower value it is more likely to
be "stuck" in the very corner of the image. High σobserve value again makes the a priori and a posteriori
trajectories to be equal and they do not move fully to the direction of the ball movement (they however
managed in this case to partially "find" the ball again when it started coming back to the initial position),
while decreasing it results in more noisy behaviour of both trajectories. The comparison of σ values and
their effects on the videos is preented in Fig. 8. Considering changing the model from no motion to
constant velocity one, there is a significant difference in the result. The good trajectory in Fig. 7 was
based on the no motion model and constant velocity one resulted in similar behaviour to Fig. 6 – the
tracker stopped tracking when the ball hit the wall and changed the movement.

Figure 6: The effect of using the parameters tuned for video 2 on video 3.

5

Figure 7: Tracking the ball on video 3.

(a) High σposition (b) Low σposition (c) High σvelocity (d) Low σvelocity

(e) High σobserve (f) Low σobserve

Figure 8: Comparison of σ magnitudes for velocity, position and observation for video nr 3.

2.4 General observations
In all the videos, there were parameters which had similar results when being changed. Having fewer

bins in histogram color model made the tracking more general, therefore it was less accurate (we made
the disctinction on fewer features). If we increase this number, we will obtain better results, however at
some point the tracker can become too specific when looking for similarities and it may not be accurate
anymore. Allowing the appearance model to be updated after each iteration adjusts it to the current
surrounding, which in a varying environment might be useful (in our case we mostly had plain wall
throughout the video, but if on the way the background is significantly different than the starting one, we
might lose the correct tracking). The number of particles affects the choice of the center of the tracking
bounding box – again, usually more is better for tracking the object, however too many may result in
too specific search and taking into consideration data which is not relevant. If we do not have enough
particles, the result will be highly noisy because of the lack of informative data.

6

	CONDENSATION Tracker Based On Color Histograms
	Color histogram
	Deriving A matrix
	Propagation
	Observation
	Estimation
	Resampling

	Experiments
	Video 1
	Video 2
	Video 3
	General observations

