
Lab assignment 7

ETH Zurich, Computer Science Department

Computer vision

Report

Structure from Motion and RANSAC

Author
Emilia Szymańska, 22-945-547

December 2022

The objective of this lab assignment was to implement a Structure from Motion pipeline and RANSAC
line fitting.

1 Structure from Motion

1.1 Essential matrix estimation
The first step is to lift the keypoints to the normalized image plane first – I make the points ho-

mogeneous by adding ones as the last coordinates, calculate the inverse matrix of K and multiply it
by homogeneous keypoints (transposed to match the dimensions of K matrix for multiplication, then I
transpose normalized keypoints back to their initial dimensions). The next step is to create a constraint
matrix to reformulate the constraint x̂T

1 Ex̂2 = 0. I do that by adding rows corresponding to each keypoint
match in a form of [x2x1, x2y1, x2z1, y2x1, y2y1, y2z1, x1z2, y1z2, z1z2], where in fact Z coordinates should
be equal to 1. Then, the Singular Value Decomposition is applied to the constraint matrix and the last
row of obtained V H matrix contains elements of Ê. This vector has to be reshaped to be a matrix 3x3.
We need to fulfill the essential matrix constraints that the third singular value is equal to 0 and the first
to are equal and greater than 0 (in our case we can assume them as 1). Therefore, SVD needs to be
applied to Ê and obtained U and V H elements are multiplied by S, which is a diagonal matrix with 1,
1, 0 on its diagonal.

The code implementation of this part is presented below:

1 de f Est imateEssent ia lMatr ix (K, im1 , im2 , matches) :
2 K_inv = np . l i n a l g . inv (K)
3
4 kpts1 = MakeHomogeneous (im1 . kps , ax=1)
5 kpts2 = MakeHomogeneous (im2 . kps , ax=1)
6
7 normalized_kps1 = K_inv @ kpts1 .T
8 normalized_kps2 = K_inv @ kpts2 .T
9 normalized_kps1 = normalized_kps1 .T

10 normalized_kps2 = normalized_kps2 .T
11
12 constra int_matr ix = np . z e r o s ((matches . shape [0] , 9))
13 f o r i in range (matches . shape [0]) :
14 x1 , y1 , z1 = normalized_kps1 [i] [0] , normalized_kps1 [i] [1] , normalized_kps1 [i] [2]
15 x2 , y2 , z2 = normalized_kps2 [i] [0] , normalized_kps2 [i] [1] , normalized_kps2 [i] [2]
16 A_i = np . array ([x2∗x1 , x2∗y1 , x2∗z1 , y2∗x1 , y2∗y1 , y2∗z1 , x1∗z2 , y1∗z2 , z1∗z2])
17 constra int_matr ix [i] = A_i
18
19 _, _, vh = np . l i n a l g . svd (constra int_matr ix)
20 vectorized_E_hat = vh [−1 , :]
21
22 E_hat = vectorized_E_hat . reshape ((3 , 3))
23
24 U_hat , _, VH_hat = np . l i n a l g . svd (E_hat)
25 s = np . array ([1 , 1 , 0])
26 S_hat = np . diag (s)
27 E = U_hat @ S_hat @ VH_hat
28
29 re turn E

1.2 Next steps
I did not manage to overcome some of the problems and therefore did not continue on Structure from

Motion task.

1

2 RANSAC

2.1 Least-squares solution
To implement the least square solution, I first (as suggested by the linalg.lstsq documentation) rewrite

the problem from y = kx+ b to y = Ap, where A = [[x1]] and p = [[k], [b]]. Then I use the lstsq to solve
for p as presented in the code:

1 de f l eas t_square (x , y) :
2 A = np . vstack ([x , np . ones (l en (x))]) .T
3 k , b = np . l i n a l g . l s t s q (A, y , rcond=None) [0]
4 re turn k , b

2.2 RANSAC implementation
First I use the np.choice function to randomly choose a subset of both x and y point sets. Then I

compute the least-squares solution for this subset and with obtained k, b I calculate the number of inliers
and the mask that denotes the indices of inliers (a point is an inlier if its distance to the line smaller
than thres_dist, which is compared in num_inlier function). If the number of inliers is larger than the
current best result, I update the parameters k_ransac, b_ransac, best_inliers and inlier_mask. The
code corresponding to this part can be found below:

1 de f num_inlier (x , y , k , b , n_samples , th re s_d i s t) :
2 num = 0
3 mask = np . z e ro s (x . shape , dtype=bool)
4 f o r i in range (n_samples) :
5 d i s t = abs (k∗x [i] − y [i] + b) /math . s q r t (k∗k + 1)
6 i f d i s t < thre s_d i s t :
7 num += 1
8 mask [i] = True
9

10 re turn num, mask
11
12 de f ransac (x , y , i t e r , n_samples , thres_dist , num_subset) :
13 k_ransac = None
14 b_ransac = None
15 in l ier_mask = None
16 b e s t_ i n l i e r s = 0
17
18 f o r _ in range (i t e r) :
19 x_subset = np . random . cho i c e (x , s i z e=num_subset)
20 y_subset = np . random . cho i c e (y , s i z e=num_subset)
21 k , b = least_square (x_subset , y_subset)
22 num_inl , mask = num_inlier (x , y , k , b , n_samples , th re s_d i s t)
23 i f num_inl > b e s t_ i n l i e r s :
24 b e s t_ i n l i e r s = num_inl
25 in l ier_mask = mask
26 k_ransac = k
27 b_ransac = b
28
29 re turn k_ransac , b_ransac , in l ier_mask

2

2.3 Results
After running RANSAC, the results presented in Fig.1 are obtained. The plot corresonds to:

• true coefficients: k = 1, b = 10,

• linear regression coefficients: k = 0.615965, b = 8.961727,

• RANSAC coefficients: k = 0.936744, b = 9.860836.

Figure 1: The result of running RANSAC for line fitting.

3

	Structure from Motion
	Essential matrix estimation
	Next steps

	RANSAC
	Least-squares solution
	RANSAC implementation
	Results

