LAB ASSIGNMENT 7

ETH ZURrRicH, COMPUTER SCIENCE DEPARTMENT

Computer vision

Report
Structure from Motion and RANSAC

Author
Emilia SZYMANSKA, 22-945-547

December 2022



1
2
3
4

5

26
27
28
29

The objective of this lab assignment was to implement a Structure from Motion pipeline and RANSAC
line fitting.

1 Structure from Motion

1.1 Essential matrix estimation

The first step is to lift the keypoints to the normalized image plane first — I make the points ho-
mogeneous by adding ones as the last coordinates, calculate the inverse matrix of K and multiply it
by homogeneous keypoints (transposed to match the dimensions of K matrix for multiplication, then I
transpose normalized keypoints back to their initial dimensions). The next step is to create a constraint
matrix to reformulate the constraint £7 EZ5 = 0. I do that by adding rows corresponding to each keypoint
match in a form of [xox1, oy, T221, Y221, Y21, Y221, T122, Y122, 2122], where in fact Z coordinates should
be equal to 1. Then, the Singular Value Decomposition is applied to the constraint matrix and the last
row of obtained V# matrix contains elements of E. This vector has to be reshaped to be a matrix 3x3.
We need to fulfill the essential matrix constraints that the third singular value is equal to 0 and the first
to are equal and greater than 0 (in our case we can assume them as 1). Therefore, SVD needs to be
applied to E and obtained U and V¥ elements are multiplied by S, which is a diagonal matrix with 1,
1, 0 on its diagonal.

The code implementation of this part is presented below:

def EstimateEssentialMatrix (K, iml, im2, matches):
K _inv = np.linalg.inv(K)

kptsl = MakeHomogeneous(iml.kps, ax=1)
kpts2 = MakeHomogeneous (im2.kps, ax=1)

normalized kpsl = K inv @ kptsl.T
normalized kps2 = K _inv @ kpts2.T

normalized kpsl = normalized kpsl.T
normalized kps2 = normalized kps2.T
constraint matrix = np.zeros ((matches.shape[0], 9))

for i in range(matches.shape[0]):
x1,yl,21 = normalized kpsl[i][0],normalized kpsl[i]|[1l],normalized kpsl[i][2]
x2,y2,2z2 = normalized kps2[i][0],normalized kps2[i]|[1],normalized kps2[i][2]
A i = np.array ([x2%x1,x2xyl,x2xz1,y2xx1,y2%yl,y2*z] ,x1%22 ,yl*z2 ,21%22])
constraint matrix[i] = A i

~, _, vh = np.linalg.svd(constraint matrix)
vectorized E _ hat = vh[—1,:|

E_ hat = vectorized E_hat.reshape ((3,3))
U_hat, , VH hat = np.linalg.svd(E_hat)
s = np.array ([1, 1, 0])

S _hat = np.diag(s)

E = U_hat @ S_hat @ VH_hat

return E

1.2 Next steps

I did not manage to overcome some of the problems and therefore did not continue on Structure from
Motion task.



W N e

1
2
3
1
5

6

{
8
9

10
11
12
13
14
15
16
17
18

26

28
29

2 RANSAC

2.1 Least-squares solution

To implement the least square solution, I first (as suggested by the linalg.lstsq documentation) rewrite
the problem from y = kx + b to y = Ap, where A = [[z1]] and p = [[k], [b]]. Then I use the lstsq to solve
for p as presented in the code:

def least square(x,y):
A = np.vstack ([x, np.ones(len(x))]).T
k, b = np.linalg.lstsq (A, y, rcond=None) [0]
return k, b

2.2 RANSAC implementation

First I use the np.choice function to randomly choose a subset of both x and y point sets. Then I
compute the least-squares solution for this subset and with obtained k, b I calculate the number of inliers
and the mask that denotes the indices of inliers (a point is an inlier if its distance to the line smaller
than thres dist, which is compared in num__inlier function). If the number of inliers is larger than the
current best result, I update the parameters k ransac, b _ransac, best inliers and inlier mask. The
code corresponding to this part can be found below:

def num _inlier(x,y,k,b,n samples,thres dist):
num = 0
mask = np.zeros (x.shape, dtype=bool)
for i in range(n_samples):
dist = abs(kxx[i] — y[i] + b)/math.sqrt (kxk + 1)
if dist < thres_dist:
num +— 1
mask[i] = True

return num, mask

def ransac(x,y,iter ,n_samples,thres dist ,num _ subset):
k ransac = None
b _ransac = None
inlier _mask = None
best inliers = 0

for _ in range(iter):
x_subset = np.random.choice (x, size=num subset)
y _subset = np.random.choice(y, size=num subset)
k, b = least square(x_subset,y subset)
num_inl, mask = num _inlier(x, y, k, b, n_ samples, thres dist)
if num_ inl > best inliers:
best inliers = num_inl
inlier mask = mask
k ransac = k
b_ransac = b

return k ransac, b_ransac, inlier mask



2.3 Results
After running RANSAC, the results presented in Fig.1 are obtained. The plot corresonds to:

e true coefficients: k =1, b = 10,
e linear regression coefficients: k£ = 0.615965, b = 8.961727,
e RANSAC coefficients: k£ = 0.936744, b = 9.860836.

Inliers
20 4 Qutliers
—— Linear regressar
= RANSAC regressor
15 ~
1§}
(7]
=
2
w 10
&
5 .
D -
T T T T
-5 0 5 10
Input

Figure 1: The result of running RANSAC for line fitting.



	Structure from Motion
	Essential matrix estimation
	Next steps

	RANSAC
	Least-squares solution
	RANSAC implementation
	Results


