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Abstract

This project addresses the problem of markerless motion
capture of multiple persons in different scenes. The goal is
to estimate the 3D poses of each person in multi-view videos
depicting multiple persons performing various tasks and in-
teracting with each other. To solve this problem, we cre-
ated a pipeline that generates sequences of 3D LISST body
parameters that correspond to individual persons. In our
pipeline, we used OpenPose to recover 2D poses from indi-
vidual frames and match them across views and over time
with a greedy matching algorithm available in mv3dpose
github repository. Additionally, we included a track stitch-
ing algorithm and used motion priors to achieve more ac-
curate and smooth tracking even with many persons in the
scene. In this report, we present the details of our approach
and the performance of our pipeline on the CMU Panoptic
and EgoBody datasets. We analyze our solution with ab-
lation studies and present the shortcomings of additional
possible elements of the pipeline that we did not use, such
as visual similarity matching.
Code: github.com/emilia-szymanska/3D pose estimation

1. Introduction
Markerless motion capture is the task of capturing the

movement of persons in the scene without the use of any
physical markers. The goal of this task is to track human
motion by only using multiple synchronized and calibrated
standard 2D cameras that capture the scene. Accurate and
robust solutions to this problem have many applications,
e.g. in the entertainment industry (where marker-based mo-
tion capture is currently widely used), biomechanics re-
search, or sports analysis. The ability to estimate and track
the 3D poses of multiple persons in the scene can enable re-
covery and analysis of their interactions without the need to
interfere with the analyzed persons and their environment.

To create a working solution to the problem of mark-
erless motion capture, several challenges need to be over-
come even if there is only one person in a very simple
scene. These challenges include the initial keypoint and
pose detection in individual frames, and 3D pose estimation
that accounts for inaccuracies of keypoint estimation and
their incompleteness due to occlusions of some body parts.
Hence even in this simplified case, accurate motion capture
require the use of body priors. The goal of this project,
however, is to recover interactions of multiple persons in
the scene, which introduces multiple additional challenges.
Since multiple poses can be detected in each frame, each
2D pose needs to be matched and associated with poses de-
tected in frames from other views. Only with a correct as-
sociation, keypoints in detected poses can be triangulated to
obtain 3D poses of persons in the scene. Furthermore, those
poses need to be tracked over time, since all persons can
dynamically move in the scene and interact with each other.
The presence of many persons and objects in the scene in-
troduces many more occlusions and ambiguities at various
stages of any markerless motion capture pipeline. In sec-
tion 2, we discuss different approaches that have been re-
cently proposed to solve these challenges. Even though a
lot of progress has been made in the field of markerless mo-
tion capture, the state-of-the-art methods still suffer from
improper pose estimation and pose matching in challenging
scenes, such as scenes with many persons of similar appear-
ance.

In our pipeline, we build on recent solutions for pose de-
tection and 3D pose estimation. We use OpenPose [7] to es-
timate 2D poses in individual frames from each view. This
is a framework widely used as a first step of 3D pose estima-
tion and tracking. However, it does not provide tracking of
poses over consecutive frames. For pose matching, we use
the algorithm presented in mv3dpose [9]. This algorithm
greedily matches 2D poses across views based on keypoint
positions and epipolar geometry, and 3D poses based on
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their position after each 3D pose has been triangulated. We
build on those two elements to create our 3D pose estima-
tion pipeline, which contains additional elements that aim
to address the issues of recent 3D pose estimation pipelines:
track stitching, LISST [33] integration, and motion priors.
Hence, the main contributions of our project are:

• Track stitching – we improved the performance of
matching 3D poses over time by adding a track stitch-
ing algorithm. With this algorithm, we addressed is-
sues of the basic mv3dpose algorithm, that struggled
with correct tracking in longer sequences, especially
with multiple persons interacting with each other in the
scene.

• LISST integration – we integrated the 3D pose esti-
mation pipeline with LISST pose and shape priors.

• Motion priors – to improve the smoothness of move-
ment in consecutive 3D body poses of each person we
used motion priors and included them in the recovery
of LISST parameters.

• Visual similarity matching – we additionally ana-
lyzed the method of pose matching with additional vi-
sual cues with several approaches, based on both fea-
ture detection and machine learning methods. How-
ever, the approaches we considered did not perform
well with large viewpoint changes across views and
similar appearance of some persons in the scene.

2. Related Work
3D human pose estimation. Estimating 2D (and further

on 3D) human poses from videos is one of the highly chal-
lenging topics in computer vision research. State-of-the-art
solutions still do not match the ground truth data and each
year more and more improvements appear. One of the first
trials to recognize human movements in images [1] modeled
human bodies with 3D cylinders and applied a Kalman fil-
ter to estimate model parameters over the frames. Ten years
later, Felzenszwalb and Huttenlocher [2] made an attempt to
use pictorial structures to estimate human poses. They per-
ceived a human body as a collection of parts connected in
a deformable configuration and represented the overall ap-
pearance of each part with the use of a patchwork of local
features. Another approach focused on sequential predic-
tion taking advantage of convolutional neural networks [3].
It allowed for capturing spatial relationships between body
parts, and by extension refining the estimates for the part
locations. Neural networks (especially convolution-based
ones) proved to yield satisfying results, therefore other re-
searchers based their methods on them as well [4–6].

One of the most successful and currently widely used
solutions for 2D human pose estimations is OpenPose [7].

This framework uses part affinity fields to model the spatial
relationships between body parts and later assign them to
multiple people in a frame. As for now, however, this solu-
tion provides only 2D poses and does not perform tracking
over frames from the same video. Yet, due to its effective-
ness, open-source access, and in-progress improvements, it
was selected as the starting point for the 3D pose estimation
in this project.

3D pose estimation can be based on 2D pose estima-
tion from multi-view videos from calibrated cameras. Some
methods use only geometric cues to obtain 3D joint esti-
mates [8–10], but an approach integrating the appearance
features into the geometric-based pipeline yields promising
results [11].

Multi-person matching and tracking. One of the chal-
lenges in the project was correctly identifying, which poses
from different views correspond to the same person. As
OpenPose can return noisy data, the geometrical similar-
ity may not be enough to define the matches. There ex-
ist multiple techniques dealing with matching images taken
from different viewpoints, at different distances, and with
varying illumination. There are two main trends: feature-
based matching and machine learning approach. The first
one focuses on extracting keypoints from images and then
performing a matching based on the distance between fea-
tures. Some of the commonly known algorithms for key-
point extracting (and later matching) are Scale-Invariant
Feature Transform (SIFT) [19], Speeded Up Robust Fea-
tures (SURF) [12], Binary Robust Independent Elementary
Features (BRIEF) [13], ORB (Oriented FAST and Rotated
BRIEF) [18], and Features from Accelerated Segment Test
(FAST) [14]. Machine learning, however, has gained pop-
ularity over the years in this area. Deep learning has been
used for identifying the embedding space in which similar
images are close to each other [15], learning local image
descriptors [17], or estimating the image homography [16].

Tracking multiple objects is commonly formulated as
a data association problem, where a track-by-detection
method can be applied to re-identify target objects across
different frames. Detection tracking lies in implement-
ing visual and motion association elements, which can be
addressed with robust appearance models such as color
histograms [22] and deep network features [24], and lin-
ear [21, 22] and non-linear [23] motion models for motion
consistency. Incorporating tracking across multiple differ-
ent views introduces another layer of complexity to multi-
object tracking as data association is required between cam-
eras as well. Researched solutions focus on both over-
lapping [29, 30]and disjoint [27, 28] camera views, with
the general approach being to generate tracklets that con-
tain geometric and/or appearance features over a period of
time and to associate the tracklets into complete tracks for
each detected person. Depending on the complexity and
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robustness of the tracked data, tracklets can be associated
through machine learning approaches [24,32] or with algo-
rithmic methods such as combinatorial optimization [31],
parametrized quadratic optimization [25], or even the sim-
ple greedy algorithm [9]. In this project, we decided to
build upon the approach presented in [9], because it was
open source and had some room for improvement in terms
of track generation and probable appearance cue integra-
tion.

LISST integration. To recover sequences of LISST
parameters, LISST already provides an optimizer frame-
work [33]. It comes with basic smoothening functions and
a pose- and shape-prior. To leverage the quality of recov-
ering, Zhang et. al. [36] suggests to train a convolutional
autoencoder with perfect motions, to implement a soothen-
ing loss in latent space that works as a motion prior. The
results look promising. Chen et. al. [38] propose a very
similar approach, using a variational autoencoder. Due to
the availability of a codebase from Zhang et. al. and the
closer proximity to LISST, we choose this approach.

3. Method
We provide an overview of our approach in Fig 1. Based

on multiple videos of a scene from different views, our
pipeline extracts a sequence of LISST [33] parameters for
each person in the scene, that represents a smooth and
natural-looking motion. We use OpenPose [7] to extract
2D keypoints per frame of humans from the input videos.
We then match these 2D keypoints from different views to
the right person and gain 3D positions of the keypoints via
triangulation based on the camera parameters. The 3D se-
quences are prone to have missing or wrong points due to
occlusion and tracking errors. Therefore we calculate the
final LISST parameters based on pose, shape, and motion
priors as well as applying velocity and distance smoothing
on the output motions. We use the pose and shape priors
provided by LISST [33] and train our own motion priors
via convolutional autoencoder. With this approach, we can
fill missing data with plausible motions and achieve natural-
looking results.

3.1. 3D pose extraction

In accordance with the mv3dpose pipeline presented
in [9], 3D human poses are first estimated from video data
and then greedily matched together to form tracks that il-
lustrate the movements of each individual throughout the
videos. To estimate 3D poses, we first obtain the 2D poses
of all detected persons in each frame at every view using
OpenPose [7]. Each person is then discretized through 2D
pose association, where at each frame, every detected 2D
human pose from the first camera view is chosen to be a
person candidate. The 2D poses from other views are then
greedily matched to the existing person candidates through

bipartite matching. The cost for 2D pose matching is de-
rived from projecting joint positions along epipolar lines
from one view to another and then comparing the location
similarity between the projected and original joint. After all
2D poses for one frame have been associated, the 3D human
poses are estimated through triangulation and then associ-
ated with the poses from the previous frame through once
again bipartite matching. The cost for pose assignment is
calculated from the mean Euclidean distance between com-
mon joint positions of two poses, and the two poses are as-
signed to one track if their pose distance falls below a cer-
tain threshold.

We discovered that for videos with many occlusions
and/or unreliable OpenPose outputs, the original mv3dpose
proposed pipeline would have trouble successfully tracking
persons which resulted in many track fragments instead of
complete tracks that ran from the beginning frame to the end
frame. To mitigate this issue, we developed an additional
step to the 3D pose extraction part of the pipeline, where
we attempt to stitch the track fragments together based on
time step differences and joint distances. Algorithm 1 sum-
marizes the stitching approach we implemented.

Algorithm 1 Track stitching algorithm

Initialize empty list of new tracks
Initialize track ID counter
for each track in tracks do

if track starts at frame 0 then
Add to new tracks list

else
Compute pose distance between track and all

tracks in new tracks list
if distance is below threshold then

if track frames are not already encompassed
by existing track then

Merge track with closest existing track in
new tracks list

end if
else

Add track as a new track in new tracks list
end if

end if
end for
Save all tracks in new tracks list

After stitching, tracks shorter than 2 seconds are re-
moved. The final stitched 3D tracks are then processed into
LISST parameters.

3.2. Visual similarity matching

The geometry-based approach to matching people across
the views and frames may not be enough to correctly per-
form the tracking. To compensate for the geometrical
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Figure 1. Pipeline flowchart of the implemented method.

method imperfections, an appearance similarity matching
would need to be implemented. The idea was to confirm the
geometrical matches between poses from different views
corresponding to the same person. Three approaches were
selected for testing.

The first two methods implement the idea of feature
matching. It focuses on defining a set of interest points
(called features) in two images and then performing a brute
force matching between them so that the features which are
closest with respect to each other are marked as correspond-
ing ones.

The first descriptor used in the feature matching was the
Oriented FAST and Rotated BRIEF (ORB) descriptor [18].
It uses the intensity-weighted centroid of the keypoint patch
and extracts the orientation as the direction of this centroid
with reference to the keypoint. It is a binary descriptor,
hence it allows for a very fast matching, but also adds the
feature of being rotation invariant. Brute force matching is
performed with the Hamming distance criterion.

The second descriptor, Scale Invariant Feature Trans-
form (SIFT) [19] was selected due to its scale invariance,
feature locality, and effectiveness. It is robust to up to 50o

viewpoint changes and non-affine illumination shifts. Its
features are local extrema in both space and scale of the

Difference of Gaussian images. To avoid false matches, the
ratio of closest-distance keypoint to second-closest distance
keypoint is taken into consideration – it has to be lower than
0.75 for the match to not be rejected.

The third approach, however, utilizes a neural network
Contrastive Language–Image Pre-training (CLIP) [20] cre-
ated by the OpenAI development team. Although the model
is mainly used for predicting the most relevant text descrip-
tion for an image out of the provided candidates, the idea
was to encode the cropped images into vector space and
afterward find high density regions corresponding to fairly
similar areas in images. It performs well in finding resem-
bling image pairs, therefore it was decided to perform trials
on images from different viewpoints.

To assess all three methods, two sample images of the
same time frame but different camera ids were extracted.
Then, OpenPose detections were applied and the bounding
boxes for each detected person were created (the minimum
and maximum x and y positions were determined from the
joint locations). These bounding boxes were used for crop-
ping people from the images to later perform the similarity
checks.
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3.3. LISST parameter recovering

The final step is to convert the tracks, which contain
the 3D positions of the OpenPose skeleton, into tracks of
LISST parameters. These should be complete and natural
looking. Based on the ETH Digital-Humans course assign-
ment 3 [33], we formulate the conversion as an optimiza-
tion problem. The following challenges will be taken into
account:

• Different joint locations and number of joints due to
different base skeletons of OpenPose and LISST.

• Incomplete tracks and missing joints due to occlusion,
tracking errors, mismatching, etc.

• Outliers

• Jittering due to frame-by-frame pose extraction.

Figure 2. Symbolic mapping from OpenPose to LISST.

As shown in Fig 2, we assume a basic similarity between
the two skeletons. When two joints in OpenPose are the ba-
sis of only one joint in LISST, we take the mean position
(see head). Some joint positions in LISST do not have a cor-
respondence from OpenPose (see spine). An exact mapping
and interpolation/extrapolation of the missing joints would
be very complicated and probably highly ill-posed in case
of more missing joints. We tackle the problem of miss-
ing joint positions and offsets between the skeletons with
pose and shape priors and smoothing during the optimiza-
tion process.

We assume a sequence of T frames with B people and
J = 31 joints in the LISST parameterization. From the
mapping we receive a sequence of joint locations Jdata ∈
RT×B×J×3 with a boolean mask Jmask ∈ {0, 1}T×B×J ,
indicating if the joint locations are valid or missing.

As in assignment 3, we introduce the optimization vari-
ables bone length lbone,latent ∈ RB×12 and local joint rota-
tion Jrot,canonical,latent ∈ RT ·B×J×zd in latent space, the
root location rlocs ∈ RT×B×3 and the transformed rota-
tion of the bodies rrot ∈ RT×B×6. The variables will get
initialized with zero. Due to the normalization of the pri-
ors, these are the most valid poses and shapes. We use the
pose and shape priors from assignment 3 and can therefore
use the according decoder to get lbone and Jrot,canonical
and via forward kinematics receive the joint locations Jl ∈
RT×B×J×3 and rotations Jrot ∈ RT×B×J×3×3

Jl, Jrot = fk(rlocs, Jrot,canonical, rrot, lbone) (1)

in world coordinates.
These can be used to apply loss functions:

• Data loss to ensure, that the LISST skeleton follows
the OpenPose skeleton:

ldata =
||Jmask ◦ (Jdata − Jl)||1

3 · ||Jmask||1
(2)

• Motions are continuous. Body parts cannot move very
far between one frame and the next one. To avoid
jittering, we penalize big movements with a distance
smoothing loss. Empirically we figured, for some
body parts (e.g. hands, arms), sudden movements are
way more common than for others (e.g. hips, legs).
Therefore we weigh each loss per joint with wd ∈ RJ :

lsd =
1

3(T − 1)BJ

T−1∑
i=1

B∑
j=1

J∑
k=1

3∑
l=1

wd,k|(Jl)i+1,j,k,l − (Jl)i,j,k,l|

(3)

• Due to low fps rates or fast-moving body parts, the pre-
vious loss term can also have negative effects through
also penalizing real movements. We assume that
movements that go in the same direction over mul-
tiple frames are not outliers. We therefore intro-
duce a velocity loss, that only penalizes new direc-
tions of movement. We obtain the velocity matrix
V ∈ R(T−1)×B×J×3 for all time steps t with Vt =
(Jl)t+1 − (Jl)t. Then we get the velocity smoothing
loss with:

lsv =
1

3(T − 2)BJ

T−2∑
i=1

B∑
j=1

J∑
k=1

3∑
l=1

wd,k|Vi+1,j,k,l − Vi,j,k,l| (4)

• During training, the latent variables of the pose and
shape priors are getting normalized around zero.
Therefore we can use the squared mean over all en-
tries of Jrot,canonical,latent and l[bone, latent as the
corresponding loss.

Additionally, motion priors can help not only to validate
static poses and shapes, but also validate natural-looking
motions over multiple frames. Based on Zhang et. al. [36],
we use a convolutional autoencoder to learn the latent vari-
ables of LISST clips. As shown in Fig 1, while training we
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apply a smoothing loss, to ensure that motions that appear
after each other have similar latent variables. We trained the
autoencoder on 20.000 clips with 40 frames and normal-
ized in orientation and position. In our LISST recovering
optimizer, in each iteration, we split our sequence into 40
frames clips as well, normalize, and use the encoder part to
transform the clips to the corresponding latent variables. A
smoothing loss term applied to the latent variables ensures
valid motions.

4. Experiments
4.1. Datasets

We used two datasets for our project: the CMU Panoptic
Dataset [34] and the EgoBody Dataset [35]. Both datasets
contain multiview videos of multiple persons in an indoor
scene interacting with each other. With these datasets, we
could therefore test the robustness of our pipeline against
occlusions by other persons, as well as objects such as ta-
bles.

The CMU Panoptic dataset contains 65 sequences pre-
senting one or multiple persons. Each sequence is recorded
with 31 HD and 480 VGA cameras. In our experiments,
we used up to 5 views from HD cameras per sequence.
The videos from those cameras are already synchronized,
and HD cameras record at a resolution of 1920x1080 at 30
FPS. We used several selected sequences from this dataset:
dance, build, haggle, and pizza. The dance sequence al-
lowed us to test the tracking of a single person performing
very dynamic and complex movements. Other sequences
allowed us to test pose matching and tracking of multiple
persons. In particular, the pizza and build sequence enabled
us to test the pipeline with a recording where multiple per-
sons walk around in the scene and interact with objects cre-
ating many occlusions for various views.

The EgoBody Dataset contains 125 sequences of pairs of
people performing various tasks and interacting with each
other. We primarily used two sequences from this dataset
for our experiments with 3 views per sequence.

Due to hardware limitations, we performed the 2D pose
estimation for individual frames with OpenPose separately
from the rest of the pipeline for our experiments. Before
running the experiments, we precomputed 2D poses with
hand detection for all frames. Due to memory limitations,
we run OpenPose at a reduced resolution of 192x180, which
might have negatively influenced its performance and the
overall results of our pipeline, especially in more challeng-
ing scenes.

4.2. Evaluation

To demonstrate the validity of our approach for multi-
person multi-view 3D pose extraction, we performed both
visual and quantitative evaluation. Quantitatively, we eval-

Dataset Before After Actual
Dance 5 1 1
Build 2 2 2

Haggle 5 3 3
Pizza 28 10 7

EgoBody1 2 2 2
Egobody2 2 2 2

Table 1. Number of tracks before and after stitching.

uated the validity of our stitching algorithm and the overall
accuracy of our 3D pose extraction pipeline.

4.2.1 Stitching Algorithm

As the purpose of stitching was to piece together broken
tracks to better match the actual number of tracks in a video,
we compared the number of output tracks before and af-
ter stitching to the correct number of tracks, where each
track represents the presence of one person in a video. Ad-
ditional tracks are counted for every new person that en-
ters the scene. Tab. 1 summarizes the performance of our
pipeline in terms of track detection before and after stitch-
ing. For datasets Build, Egobody1, and Egobody2, the
pipeline successfully detected the correct number of tracks
without stitching. For datasets with fragmented tracks, our
stitching algorithm was able to piece together the correct
number of tracks for Dance and Build and improve the track
detection for Pizza.

4.2.2 Mean Per Joint Position Error (MPJPE)

To demonstrate the correctness of the tracks pieced together
through stitching and to give an overall evaluation of the
accuracy of our 3D pose extraction pipeline, we calculated
the MPJPE between our estimated LISST 3D poses and the
ground truth 3D poses. Tab. 2 shows the average MPJPE
and the deviation of MPJPEs for every track in the Build,
Haggle, and Pizza datasets. Our pipeline averages around
6-7 cm of error on Build and Haggle and struggles more
with Pizza, as Pizza contains more people which presents
the opportunities for more occlusions and tracking confu-
sion.

4.2.3 LISST re-projection

To visualize our LISST 3D pose accuracies, we wrote a
script, that uses the camera parameters to re-project our fi-
nal LISST 3D poses back onto their respective videos and
compares our estimated joint positions to the original joint
positions of the people. From the demo video here: Video-
Link [39], one can see that the overlaid poses closely match
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Dataset Average
MPJPE
[cm]

Track
MPJPE
[cm]

Number of
tracks

Build 6.98 6.22 - 7.75 2
Haggle 6.22 5.18 - 6.81 3
Pizza 13.01 5.55 - 33.30 7

Table 2. MPJPE for CMU datasets.

the movements of their respective persons in most frames
for both the CMU Panoptic [34] and Egobody [35] datasets.

4.2.4 Difficulties

As mentioned previously, areas where the 3D poses do not
successfully match their original humans, shown for exam-
ple in Fig. 3, could originate from occlusions and Open-
Pose inaccuracies. For rapid or obstructed human move-
ment, OpenPose may incorrectly identify joints or merge
joints from one human to another if they are overlapping in
a view. Additionally, noisy or missing joint data can also
cause failures in matching and tracking, which ultimately
result in missing or misplaced 3D joint positions.

The 3D poses tend to drift over time and sometimes the
tracking algorithm merges poses that are detected closely
together due to one or more of the previously discussed er-
rors. The merging is necessary since otherwise too many 3D
tracks are created, however the merging criterion should be
adjusted so that the situation presented in Fig. 3b would not
be repeated. If the final 3D output contains track fragments
that have drifted too far away from their original track, then
stitching may not be able to merge these fragments or may
merge them to incorrect persons, which was the case with
the Pizza dataset.

(a) (b)

Figure 3. (a) Error due to occlusion. (b) Error due to person as-
signment confusion.

4.2.5 Motion Prior

To evaluate the effect of the motion prior smoothening,
we used visual comparison. In this video, we compare
the raw 3D reconstruction to a reconstruction with motion
prior applied. No other smoothing, pose- or shape priors

got applied, apart from infilling of missing data: Video-
Link [40] The motion prior alone already shows significant
improvement of the raw data, although there still remains
potential for further improvement. Training to near conver-
gence of the motion prior took more than 24hrs on a Tesla
V100 GPU. Tuning parameters of the autoencoder like clip-
length, loss-weights and encoder/decoder structure did not
take place due to time constraints.

4.3. LISST output

To visualize the final output of the pipeline, the sequence
of LISST parameters, we use Blender [37]. A video of the
of the resulting sequences of the 4 different scenes from
the data-sets Egobody and Panotic is shown here: Video-
Link [41]. In general, we can say that our pipeline delivers
smooth and natural-looking motions that visually match the
original video very accurately. Via priors and smoothening
we can account for occlusion and tracking errors to a high
degree. However, the pipeline has its limit when the original
video contains very fast, sudden, or uncommon movements
and large occlusions remain influencial.

4.4. Visual similarity matching

To assess the effectiveness of the selected methods for vi-
sual similarity matching, the first frames of the videos from
two cameras (of ids 1 and 2 in the pizza dataset) were taken
into consideration. Openpose detections transformed into
bounding boxes – later used for image cropping – are pre-
sented in Fig. 4.

Figure 4. Two views of the same time frame selected for visual
similarity matching between detected people.
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2.1 2.2 2.3 2.4 2.5
1.1 67 54 45 67 0
1.2 33 29 22 37 0
1.3 20 23 16 29 0
1.4 107 85 60 94 0

Table 3. Number of feature matches between two images with the
use of ORB descriptor.

2.1 2.2 2.3 2.4 2.5
1.1 4 2 2 2 1
1.2 4 2 4 3 4
1.3 4 8 4 4 0
1.4 20 13 7 24 11

Table 4. Number of feature matches between two images with the
use of SIFT descriptor.

2.1 2.2 2.3 2.4 2.5
1.1 75% 65% 72% 77% 75%
1.2 87% 86% 89% 83% 79%
1.3 86% 85% 91% 80% 78%
1.4 72% 66% 63% 69% 59%

Table 5. Similarity between images in accordance with the CLIP
model.

Two approaches were used to match the people from
different views using the appearance similarity – feature
matching and similarity measure with a neural network
model. The number of feature matches obtained with an
ORB and SIFT descriptors are presented respectively in
Tab. 3, 4. CLIP model, however, returns the similarity score
in percentages, as shown in Tab. 5.

The results were not satisfactory enough to integrate any
of these methods into the main pipeline. The number of
matches for feature matching should be the highest for the
corresponding images, and the similarity score should be
maximum for the corresponding images, and these condi-
tions are not met in the analyzed case.

The main challenge in the appearance similarity match-
ing in this project were severe viewpoint changes. Although
SIFT handles well the viewpoint changes even up to 50o,
ORB and CLIP are only partly view-point invariant. Posi-
tions and orientations of the cameras highly vary, which af-
fects the perceived scale and illumination of people in each
lens.

5. Conclusions

Summary. In this project, we developed a 3D human
pose estimation pipeline that integrates with LISST. We
based the tracking on OpenPose, matched key-points via
mv3dpose and developed an algorithm to achieve one 3D
joint track per person. We then leveraged and optimizer to
create accurate, smooth and natural looking sequences of
LISST parameters, that can be visualized with LISST. Our
autoencoder based motion priors together with given pose-
and shape-priors ensure good results even when signifi-
cant occlusions are happening and are further fine-tuned by
body-part-weighted velocity- and distance-smoothing func-
tions.

Limitations and Future Work. The solution on which
we based our 3D pose extraction did not always perform
accurately; adjustments needed to be introduced, such as a
stitching algorithm to obtain continuous tracks. There are
known limitations to mv3dpose. For instance, the camera
order highly affects the 3D pose computation, and the track-
ing & matching components are purely geometry-based,
hence not robust to noisy data. Additionally, an exhaustive
search of the optimal parameters set should be performed –
it may be a matter of insufficient smoothing, too short/long
minimum track length, or the poor track matching criterion.

The imperfections of the approach implemented in
mv3dpose could be compensated by visual similarity track-
ing. Although the attempts presented in this project were
not successful, another trial with an artificial neural network
(pre-trained for the purpose of viewpoint invariance) could
be performed. It could also be beneficial to account for in-
correct OpenPose detections – if the poses are not correctly
identified, then the person cropping can result in data loss,
and therefore the methods cannot be accurate anymore.

Furthermore, OpenPose itself doesn’t reach its full po-
tential. Currently, it only tracks keypoints frame by frame
and does not leverage information from other frames. Feed-
ing back this information into a CNN used for detection
or a Kalman-filter for predictable movements could poten-
tially produce more accurate key-points from the beginning.
Limited resources prevented effective tuning, which likely
would have improved the outcome.

Triangulation also poses the issue of information loss.
As triangulation requires at least two known 2D positions
of a joint, frames containing joints that only appear in one
view will be limited in the information available for person
association and tracking. A possible solution is to first track
people in each view over all frames and match them after-
wards, keeping the 2D positions that got matched to one
person. During the LISST recovering process, these can be
used for loss functions via re-projecting the current LISST
parameters, which would mitigate multi-camera occlusions.
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6. Contributions of team members

• Emilia Szymanska – mv3dpose adjustments, stitching
algorithm, visual similarity matching;

• Yuanchen Yuan – mv3dpose adjustments, stitching al-
gorithm, pipeline evaluation;

• Johannes Gaber – LISST parameter recovering, mo-
tion prior;

• Piotr Libera – 2D pose estimation, experiments and
pipeline evaluation.
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