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Dr. Rik Bähnemann
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Abstract

Coverage path planning, the process of determining a path that ensures the coverage
of an entire environment, has found wide application in fields such as surveillance,
environmental mapping, and surface cleaning. In situations where certain mobile
robots cannot perform on-the-spot turns or where such maneuvers result in longer
traversal times, a refined approach is required. This project introduces a solution
by applying post-processing, Dubins-like path smoothing to a path generated by
a coverage path planner, formulated as a local constrained optimization problem.
Subsequently, this smoothed path is transformed into a trajectory. A series of tests
on an underwater robot were performed to compare the efficiency of the smoothed
trajectory against the original one. The results highlighted the path smoothing
algorithm’s ability to improve trajectory tracking, reducing the cumulative error
by up to 35%, but with some trade-offs in certain situations such as faster in-place
rotations. Furthermore, an initial exploration into dynamic path replanning was
undertaken, expanding the project’s scope. These findings lay the groundwork for
future research, aiming to refine these methodologies and pave the way for more
efficient smooth coverage path planning.
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Chapter 1

Introduction

Robotics is a sector, whose advancements can facilitate or fully automate tasks
conventionally performed by humans. The integration of robotic systems can result
in an increased repeatability and precision, as well as in cost reduction. Most
importantly, robots serve to replace humans in hazardous environments [1], thus
improving the safety measures for workers.
One of such robotics-mediated replacement applications lies in the domain of under-
water exploration. Elevated pressure, absence of breathable air and the potential
threat posed by deep-water animals are just some of the factors that contribute to
underwater missions being challenging for human divers. The progress related to
remotely operated vehicles (ROVs) or autonomous underwater vehicles (AUVs) [2],
equipped with state-of-the-art sensors and peripheral devices, brought significant
enhancements in various marine studies. These include comprehensive analysis of
marine wildlife [3], the creation of detailed bathymetric maps [4], contribution to
marine archaeology [5], or underwater infrastructures maintenance [6].
In the context of robotics, the execution of the aforementioned tasks such as locat-
ing ship wrecks, sunken monuments, specific animal species or pipe leakages can be
primarily formulated as object detection in a predefined area. To accomplish the
task, the environment should be scanned in an efficient manner to avoid unneces-
sary energy loss and to decrease the search time. The research in coverage path
planning for mobile robots addresses this issue [7], aiming to propose a sweeping
pattern that not only ensures the full environmental scan, but also optimizes spe-
cific characteristics corresponding to the output path (e.g. movement time, number
of turns, distance).
The 6 degree-of-freedom design paradigm for underwater robots [8] eliminates the
necessity for rotational movements when using bottom-facing scanning sensors.
However, the alternative of reducing the number of propellers and simplifying the
design encourages engineers to prioritize respectively the decreased costs and im-
proved hydrodynamic properties over the number of degrees of freedom. Hence, the
coverage path planning strategies must account for the need to decelerate to a halt,
turn in place and re-accelerate to the optimal speed when the objective is the move-
ment time optimization. Another viable strategy would involve implementing path
smoothing techniques to take advantages of the robot’s kinematic properties [9].
Moving along a curve instead of performing a turn in place could be beneficial in
terms of overall search time. However, this approach raises a critical question: how
does the post-processing smoothing affect the effectiveness of the coverage?
To answer this question, this study conducted an analytical comparison of outcomes
produced when a robot follows either a smoothed or original trajectory. Key perfor-
mance indicators utilized in this assessment included traversal time, coverage loss,
and trajectory deviation.
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Chapter 1. Introduction 2

The smoothing procedure, being a part of the introduced pipeline, was implemented
on top of an open-source coverage path planner [10]. The smoothing involved the
generation of Dubins path when feasible, with the radius of all circles corresponding
to the optimal turning radius of the robot. Depending on the waypoints derived
from the coverage path planner, and the obstacles position, the smoothing pro-
cess detailed in this study considered two primary scenarios. The first scenario,
termed inner smoothing, transformed three waypoints into a segment-arc-segment
path based on a circle inscribed within an angle defined by the waypoints. Con-
versely, outer smoothing was applied in circumstances where inner smoothing was
unfeasible, resulting in the formation of three arcs. The smoothed path was then
converted to a trajectory, which was ultimately forwarded to an underwater robot.
An original path consisting only of segments was similarly processed through the
trajectory generator.
The considered scenario assumed an object search in an environment with drifting
obstacles. To complement the simulated results, tests were conducted with Proteus,
a real robot from the Tethys Robotics team. Although the robot had 6 degrees of
freedom, its holonomic properties were not fully exploited – scanning was performed
with a forward-facing sonar, angled on the robot to ensure adequate bottom cover-
age. The robot had to follow the whole trajectory; only after the mission completion
the object would be identified from the measurements.
The results demonstrated the path smoothing algorithm’s effectiveness in enhancing
the robot’s trajectory tracking capabilities, thus decreasing the cumulative trajec-
tory error by up to 35% for the system under analysis. Interestingly, in-place rota-
tions turned out to be quicker than following a smoothed path due to specific robot
characteristics. This unexpected outcome prompted further investigations to better
understand and isolate the factors leading to these results. This underscores the
importance of considering not just the algorithmic efficiency, but also the intrinsic
properties of the robot when evaluating the overall system performance.
In addition, the project proposed an initial version of the dynamic replanner to
tackle the challenge of the drifting obstacles. However, the investigated replanning
methods were found to be not suited for the improved coverage path planner, pri-
marily due to the exact cellular decomposition integrated in the planner. Further
development of post-processing algorithms that can mediate the incompatibilities
between the replanner and coverage-handling software is required.



Chapter 2

Related Work

Coverage path planning. The goal of coverage path planning is to find a collision-
free path covering the predefined area of interest from the starting point to the final
state under optimization conditions such as travel time, number of turns, covered
distance etc. The applications of coverage path planning include surface clean-
ing [11], quality inspection [12], surveillance [13], lawn mowing [14], environment
mapping [15] or object searching [16].

Coverage path computation begins with the decomposition of the area of interest
into a set of sub-areas. This process can be approached through various methods.
For instance, trapezoidal cell decomposition [17], one of the more simplistic tech-
niques, divides the region into trapezoids upon encountering vertices during a line
sweeping process. A refined version of this, the boustrophedon cellular decomposi-
tion [18], merges the cells which entirely share an edge, thus generating a collection
of polygons. Its primary goal with respect to the trapezoidal version is to reduce the
number of excessive lengthwise motions and turns. However, it may result in a cre-
ation of concave polygons, therefore creating a need for a convex decomposition [19]
for some coverage algorithms [20, 21].

There exist numerous strategies to address the coverage path finding problem [7].
Grid-based methods, for example, decompose the targeted region into a set of uni-
form grid cells. The accomplishment of full coverage is obtained by visiting all these
cells with the use of e.g. a wave front algorithm [22]. However, the problem grows
linearly in memory in relation to the size of the environment, and exponentially
with respect to an optimal path search, which makes the approach unfeasible for
large regions of interest and robots with small sensor footprint. The spanning-tree
based coverage [23] guarantees the cells to be completely covered, but the gener-
ated solutions contains relatively a high number of turns. Additionally, the cell
decomposition depends on the sensor’s footprint – if it is big enough, numerous
cells experiencing partial coverage by obstacles are disregarded, resulting in cover-
age loss. Randomized algorithms [24, 25], while easy to implement and not requiring
robot localization, tend to result in a high area overlap. Artificial potential fields are
suitable for real-time planning and proved to be effective in obstacle avoidance [26].
However, a possibility of falling into a local optimum and poor coverage of area close
to obstacles indicate a need for further improvement. Numerous other algorithms,
including sampling-based planning (rapidly exploring random tree [27], next best
view [28]), greedy/graph search (depth-first search [29], breadth-first search [30], Di-
jkstra’s algorithm [31], A* [32]), metaheuristics (genetic algorithm [33], ant colony
optimization [34]) and human-inspired techniques (deep reinforcement learning [35],
biologically inspired neural networks [36]), have been applied to coverage path plan-
ning, trying to enhance specific properties and extending the range of application.
Additionally, path interlacing [21], optimal path calculation considering takeoff and
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Chapter 2. Related Work 4

landing points [20], coverage in higher dimensions [37], or addressing the constant
environmental disturbances [38] are some of the modifications for consideration
when implementing an application-specific solution.
The project presented in this report was build upon a coverage path planning based
on boustrophedon cell decomposition and generalized travelling salesman prob-
lem [10]. This approach proved to result with even up to 14% lower path costs
than conventional coverage planners. As the robot is searching for an object lying
on the bottom of the water body, 2D coverage is sufficient, with a controller main-
taining the same distance between the sensor and the bottom. Most importantly,
in contrary to most research papers, the program associated with the presented
method was shared open-source. This allowed for focusing on the path smoothing
and dynamic replanning in the case of moving obstacles, which were not imple-
mented in the original tool.
Path smoothing. The incorporation of smooth transitions in path planning is
critical for non-holonomic robots, particularly those unable to change their orien-
tation without forward or backward motion. Such smoothing can be performed by
employing different curves definition.
A common strategy is the usage of a Dubins (or Reeds-Shepp) path, consisting only
straight-line segments and arcs being a part of tangential circles. This relatively
simple, yet effective technique has seen extensive usage in coverage path planning
solutions [14, 39, 40].
Alternatively, clothoids utilized as primitives for path smoothing [41, 42] offer the
benefits of low computational complexity and non-zero initial curvature – features
particularly important in replanning. However, the implementation of specific al-
gorithm components can be challenging due to limited available information.
Bezier curves [43], renowned for their few fluctuations and small curvature, simplify
the implementation of the control strategy for mobile robots. Although Bezier
curves yielded better results than cubic splines and Hermite curves, the track is
always contained in the polygon formed by the original path points. This becomes
a problematic scenario when an obstacle lies within this polygon, as the algorithm
does not perform smoothing on the outer side of this polygon. Obstacle collision
issue also arises with splines [44], where the control over the side of the smoothing
is limited.
Due these limitations, Dubins path approach was chosen for this project, as it allows
for easy extension with additional arcs for obstacle avoidance. Furthermore, while
most available programming libraries lack support for collision checking between
sophisticated curves and polygons, collision detection between arcs and polygons
is widely supported, which further emphasizes the appropriateness of Dubins path
application.
Dynamic replanning. Managing drifting or mobile obstacles within an environ-
ment is a considerable challenge when avoiding collisions once the coverage path
plan is already generated. Additionally, the presence of constant disturbances such
as wind or current can result in deviations from the intended path. Such circum-
stances can lead to coverage loss, especially when obstacles free their initial posi-
tions, hence leaving their prior locations unaddressed in the original coverage plan.
Therefore, a replanning should be performed, accounting for the already covered
area, robot’s current position, and updated obstacles locations. While certain cov-
erage path planners introduced real-time replanning [37, 45, 46], the software base
selected for this project does not support it. Hence, additional software components
were integrated and evaluated in simulation.



Chapter 3

Method

3.1 Method overview

The pipeline implemented in this project is depicted in Fig. 3.1. The utilized cover-
age path planner requires an input in the form of a polygon with holes, representing
an environment with obstacles. The system also requires parameters such as sensor
footprint data, cost function type, obstacle offsets etc. Upon receiving these inputs,
the planner outputs a set of waypoints corresponding to a computed segment-based
path. These waypoints are then processed by a trajectory smoothing generator to
create a list of consecutive trajectory poses. If the user specifies a need for it, a
replanning procedure is initiated. This process involves forwarding the updated
information regarding the environment, which includes the altered positions of ob-
stacles, and a set of already visited poses to the replanning program. It then returns
an updated set of trajectory poses. The forthcoming sections of this chapter provide
an in-depth discussion on the smoothing procedure, trajectory generation, and the
implemented replanning approach.

Figure 3.1: Method pipeline.

3.2 Path smoothing

Path smoothing process presented in this project assumes two main scenarios, one
of them having two variations (Fig. 3.2).
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Chapter 3. Method 6

Figure 3.2: Smoothing scenarios.

The first scenario, referred later to as inner smoothing, transforms three waypoints
into a configuration sement-arc-segment. The arc is derived from a circle inscribed
within an angle, shaped by the said trio of waypoints, with a start and end point
being intersection points with angle’s arms.
On the other hand, outer smoothing, applied in situations when the inner one is
not feasible (e.g. obstacle lies on the inner side of the angle), is formed by three
arcs. When it is possible, the middle arc is placed in the proximity of to the middle
waypoint. However, if such an arrangement results in a collision with any obstacle
or in the other waypoints being too close to the outer arcs (for them to lie within
the segments), the circles are repositioned accordingly. These two cases are referred
to as minimum at bisector boundary and minimum at tangent intersection boundary
respectively.
The example of applications of different smoothing variants is presented in Fig. 3.3.

(a) Inner smoothing (b) Outer smoothing

Figure 3.3: Example of applications of the two versions of smoothing.

The smoothing procedure, as outlined in Alg. 1, consecutively evaluates the feasibil-
ity of each of the smoothing scenarios, with inner smoothing being prioritised over
the outer one. The program’s main loop iterates over the waypoint list returned by
the coverage path planner. The input values of the algorithm are three waypoints,
forming a convex angle, and an optimal turning radius. The algorithm returns a
pair of a binary value signifying the procedure’s success status, and a set of output
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arcs. If the smoothing is not possible to be performed with the input parameters,
the corresponding phase of the path is filled with straight line segments. Additional
segments, which join the arcs from distinct smoothing phases, are added through a
separate procedure.

Algorithm 1 Compute smoothing

Input: A,B,C ∈ geometry msgs::Pose, r > 0, ∠ABC ∈ (0;π)
Convert A,B,C to CGAL::Point 2
arcs← inner smoothing(A,B,C, r)
if not feasible(arcs) then

arcs← outer smoothing min bisector(A,B,C, r)
if not feasible(arcs) then

arcs← outer smoothing min tan intersection(A,B,C, r)
if not feasible(arcs) then

return (success = false, arcs)
end if

end if
end if
return (success = true, arcs)

What is important to emphasise, the first waypoint considered in each smoothing
does not necessarily corresponds to the one generated by the coverage path planner.
It may be shifted to the position of the end point of the final arc derived from
the preceding smoothing iteration. Consequently, new smoothing sequence’s arc
can begin no sooner than the previous smoothing ends. This technique ensures
path continuity and maintains a logical progression through the multiple smoothing
phases.
The feasibility assessment of each smoothing scenario comprises two distinct phases.
The first phase ensures path continuity by analysing the proximity between con-
secutive segments and sets of arcs. The second phase involves iterating through
all obstacles’ edges, verifying the lack of collision between them and the generated
arcs.

3.2.1 Inner smoothing

The smoothing process as proposed in this study can be conceptualized as a lo-
cal constrained optimization problem. The ultimate objective of this optimization
process is to minimize the path length and to maintain a minimal divergence be-
tween the smoothed path and the original one, with the path being smoothed using
Dubins curves.
In scenarios involving inner smoothing, this objective can be accomplished through
the consideration of a single arc. The optimal solution for the arc’s origin is subject
to a constraint, that the path needs to be continuous, in terms of both the strictly
geometrical aspect and the robot’s orientation changes (the derivative of the robot’s
orientation with respect to the progression along the path, must be finite and should
not exhibit abrupt changes).
In accordance to the symbol assignments presented in Fig. 3.4, the constraint can
be formally encapsulated by a set of equations as shown in Eq. 3.1.{

r = dist(AB, O)

r = dist(BC, O)
(3.1)

Taking these constrains into consideration, the inner smoothing method relies on
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Figure 3.4: Trajectory from path

the determination of a circle inscribed in an angle formed by the waypoints. The
output arc is formed by the intersection points I1 and I2.
The determination of the circle’s center requires the coordinates of the three way-
points A,B,C and the circle’s desired radius. The trigonometric relationships in
△BI1O and △BPO allow to compute dx, dy values. These values, when combined
with B point coordinates, define the position of O, which is required to lie on the
bisector of ∠ABC. By utilizing the law of cosines depicted in Eq. 3.2 to obtain
∠ABC, ∠ABO can be determined, as it is equal to bisecting ∠ABC.

|AC|2 = |AB|2 + |BC|2 − 2 · |AB| · |BC| · cos∠ABC (3.2)

With the established knowledge of ∠ABO and r, the value of d can be derived
from sinusoidal dependency. The angle of bisector’s slope corresponds to ∠OBP ,
therefore facilitates the correlation of dx, dy with the value of d. As the bisector is
common to both the convex and concave versions of ∠ABC, two potential solutions
should be considered and the closer one to AC should be selected.
The program-like description of these steps is presented in Alg. 2.

Algorithm 2 Compute the center of the circle inscribed in an angle

Input: A,B,C ∈ CGAL :: Point 2, r > 0, ∠ABC ∈ (0;π)
α← ∠ABO = 1

2 · ∠ABC = 1
2 · angle(A,B,C)

β ← ∠OBP = bisector slope angle(A,B,C)
d← r

sinα
dy ← d · sinβ
dx← d · cosβ
O1 ← Point 2(xB + dx, yB + dy)
O2 ← Point 2(xB − dx, yB − dy)
dO1
← distance(O1,AC)

dO2 ← distance(O2,AC)
if dO1 > dO2 then

return O2

else
return O1

end if

Upon establishing the circle’s position, the intersection points with both arms of
∠ABC are computed. The crucial aspect of inner smoothing procedure is to deter-
mine the direction of the arc, which is calculated by leveraging the cross product of
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vectors
−−→
AB and

−−→
BC. If its value is positive, the arc is interpreted as counterclock-

wise; conversely, a negative value signifies a clockwise direction. In both cases, the
direction of the arc is opposite to the direction of the directed angle ∠ABC.

Finally, an arc characterized by the computed parameters is returned, as shown in
Alg. 3.

Algorithm 3 Compute the inner smoothing

Input: A,B,C ∈ CGAL::Point 2, R > 0, ∠ABC ∈ (0;π)
O ← circle inscribed in angle(A,B,C, r)
I1 ← intersection(circle(O, r),AB)
I2 ← intersection(circle(O, r),BC)
dir ← arc direction(A,B,C)
return arc(start=I1, end=I2, center=O, radius=r, direction=dir)

3.2.2 Outer smoothing

The outer smoothing process involves the determination of three circles; the middle
one lies on the bisector of angle ∠ABC, while the others are tangential to both
the middle circle and to angle’s arms. Notably, if the points A or C are too close
to B for a central circle to consist it, the circles are shifted accordingly. Both
procedures, with the formulated constrained optimization, are described in detail
in their respective sections.

Similarly to the inner smoothing scenario, the procedure requires the coordinates
of the three waypoints A,B,C and the desired radius. It should be noted that the
radii of all the arcs are assumed to be the uniform; variable radii would generate
an overwhelming number of scenarios, thus exceeding the scope of this project.

Minimum at bisector boundary

In the optimization process of this scenario, it is necessary to balance the objectives
of maintaining minimal path length while achieving minimal deviation from the
original unsmoothed path. This compromise ensures preserving the overall coverage
to a substantial extent. Consequently, the established inequality constraint is that
the middle circle’s center can only lie along the bisector up to a distance equal to the
predefined radius from the central waypoint. In this case, the intersections of the
tangential circles can manifest at any point on the segments being the angle’s arms
formed by the three waypoints. These constraints are mathematically represented
in Eq.3.3. The symbolic notation and an illustrative representation of the optimal
solution for this scenario is provided in Fig.3.5, with the middle circle’s origin lying
exactly at the distance of r from point B.

r ≥ |BO2|
|O1O2| = 2r

|O2O3| = 2r

r = dist(AB, O1)

r = dist(BC, O3)

(3.3)

It can be observed that the determination of middle circle’s center should be anal-
ogous to the inner smoothing procedure, as described in Alg. 4. However, this time
d is known and equals r, thereby eliminating the need for the computation steps
associated with d.
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Figure 3.5: Outer smoothing - minimum at bisector boundary version

Subsequently, the location of the other circles needs to be found. Given their sym-
metrical positioning with respect to each other along the bisector, the computation
of one circle suffices – the other can simply be mirrored along the bisector’s line.
For this project, it is assumed that O3, the last of the three circles, is computed
initially.
To calculate it, the positions of all three waypoints, the location of the middle circle
and the turning radius are required. The resulting circle has to meet two require-
ments – it should be tangential to middle circle (with a distance |O2O3| equivalent
to twice the radius length) and tangential to the angle’s arm (with a distance be-
tween O3 and the segment BC equal to radius length). These conditions, after
obtaining the parameters of the line BC, form a system of equations as illustrated
in Eq. 3.4. The system yields four distinct results as presented in Fig. 3.6. To
obtain the desired x, y coordinates, first the circles lying on the same side of BC as
O2 are removed. It is accomplished by comparing the directions of vectors created
by each circle’s center and the closest point on BC – they should be opposite to the
vector corresponding to O2. From the remaining solutions, the one closest to AC is
selected. The first circle is then determined to be the mirror image of the obtained
O3 along the bisector.

Figure 3.6: All solutions for the system of equations in Eq. 3.4.

The smoothing procedure requires the determination of the start and end points
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Algorithm 4 Compute the last circle in minimum bisector boundary for outer
smoothing

Input: A,B,C,O2 ∈ CGAL :: Point 2, r > 0, ∠ABC ∈ (0;π)
a, b, c← line parameters(B,C)
solutions← solve for x, y{

2r =
√
(x− xO2

)2 + (y − yO2
)2

r =
|axO2

+byO2
+c|√

a2+b2

(3.4)

for sol in solutions do
if not on opposite side(sol, O2,BC) then

solutions← remove(sol, solutions)
end if

end for
return closest to segment(solutions,AC)

of each arc. Consequently, points I1 and I3 are computed as the intersection of
circles with the arms of the angle ∠ABC, while points I12 and I23 represent points
of intersection between circles. The direction of the middle arc is obtained with
the same method as in the inner smoothing scenario. The other circles should be
oriented in the opposite direction to the middle circle. Ultimately, all three arcs are
created using the provided parameters and the triplet is returned by the procedure,
as demonstrated in Alg. 5.

Algorithm 5 Compute the outer smoothing in the minimum bisector boundary

Input: A,B,C ∈ CGAL::Point 2, R > 0, ∠ABC ∈ (0;π)
O2 ← outer smoothing middle circle(A,B,C, r)
O3 ← outer smoothing last circle(O2, A,B,C, r)
O1 ← mirrored point(O3, bisector(A,B,C))
I1 ← intersection(circle(O1, r),AB)
I3 ← intersection(circle(O3, r),BC)
I12 ← intersection(circle(O1, r), circle(O2, r))
I23 ← intersection(circle(O2, r), circle(O3, r))
dir2 ← arc direction(A,B,C)
dir1 ← opposite(dir2)
dir3 ← opposite(dir2)
a1 ← arc(start=I1, end=I12, center=O1, radius=r, direction=dir1)
a2 ← arc(start=I12, end=I23, center=O2, radius=r, direction=dir2)
a3 ← arc(start=I23, end=I3, center=O3, radius=r, direction=dir3)
return (a1, a2, a3)

Minimum at tangent intersection boundary

This particular case is executed when at least one of the points A/C is situated
too close to B. The middle circle’s origin O2 lies anywhere on the bisector, though
not necessarily in the proximity of B. However, the constraint where the tangent
intersection between any other O1/O3 circle and angle’s arm lies anywhere on the
segment AB/BC respectively cannot be met. Hence, the conceptual foundation
for this smoothing involves moving the circle’s intersection point with the angle’s
arm, corresponding to the shorter segment, to point A/C. The scenario with |BC|
being shorter than |AB| is presented in Fig. 3.7 – I3 is shifted to C. The updated
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constrains are depicted in Eq. 3.5.

Figure 3.7: Outer smoothing – minimum at tangent intersection boundary version.



|O1O2| = 2r

|O2O3| = 2r

|O1O3| > 2r

r = dist(AB, O1)

r = dist(BC, O3)

(3.5)

Firstly, the segments lengths are compared to determine which circle presents more
difficulty in fitting into the path, therefore which one should be computed first.
This circle has to meet two requirements – it must be tangential to the angle’s
arm (the distance between the line containing the segment and the center of the
circle equals radius length) and its center has to lie on the line perpendicular to
the arm of the angle passing through the corresponding waypoint (the equation for
this line, when substituted with the circle’s center coordinates, must hold true).
Both these conditions form a system of equations presented in Eq. 3.6. Once the
perpendicular line’s parameters are determined, the system can be solved for x, y.
There are two potential solutions, symmetrical to each other with respect to the
considered segment. The solution furthest from the waypoint on the opposing arm
should be selected, as presented in Alg. 6. The center of other circle is obtained by
mirroring this solution along the bisector.

Algorithm 6 Compute the begin circle in minimum at tangent intersection bound-
ary outer smoothing

Input: p1, p2, p3 ∈ CGAL :: Point 2, r > 0, ∠ABC ∈ (0;π)
a, b, c← line parameters(p1, p2)
ap, bp, cp ← perpendicular(a, b, c, p1)
solutions← solve for x, y {

0 = apx+ bpy + cp

r = |ax+by+c|√
a2+b2

(3.6)

return furthest from point(solutions, p3)

It is worth noting that the middle circle is expected to lie on the bisector (the
equation for the bisector’s line, when substituted with the circle’s center x, y, must
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hold true) and it should be tangential to any of the other circles (the distance
between its center and the center of the other circle must be equalivalent to twice
the radius length). Solving this system of equations, illustrated in Eq. 3.7, yields
two solutions symmetric along O1O3, and the solution furthest from AC should be
selected. This procedure is depicted in Alg. 7.

Algorithm 7 Compute the middle circle in minimum at tangent intersection
boundary outer smoothing

Input: O1, A,B,C ∈ CGAL :: Point 2, r > 0, ∠ABC ∈ (0;π)
a, b, c← bisector line parameters(A,B,C)
solutions← solve for x, y{

0 = ax+ by + c

2r =
√
(x− xO1)

2 + (y − yO1)
2

(3.7)

return furthest from segment(solutions,AC)

It is important to be ensure that the first and last circle do not intersect each
other (which would lead to an excessive coverage overlap) and that they are not
positioned too distantly for the middle circle to not fit. This is achieved by verifying
the condition 4r > |O1O3| > 2r prior to generation of the smoothing solution.
The general smoothing steps are demonstrated in Alg. 8.

Algorithm 8 Compute the outer smoothing in minimum at tangent intersection
boundary scenario

Input: A,B,C ∈ CGAL :: Point 2, r > 0, ∠ABC ∈ (0;π)
if |AB| < |BC| then

O1 ← begin circle outer smoothing(A,B,C)
O3 ← mirrored point(O1, bisector(A,B,C))

else
O3 ← begin circle outer smoothing(C,B,A)
O1 ← mirrored point(O3, bisector(A,B,C))

end if
if 4r > |O1O3| > 2r then

O2 ← middle circle outer smoothing(O1, A,B,C)
### further arc generation similarly to Alg. 5 ###

end if

3.3 Trajectory generation

Once the path composed of segments and arcs is defined, a corresponding trajectory
is generated. In this project, it is assumed that this task is accomplished through
the path sampling with a specified interval between each trajectory point. The
corresponding timestamps can be calculated from the robot’s velocity model when
needed.
Program users are required to input two parameters – the sampling distance for
straight segments and for arcs, as executing a turn may necessitate higher precision
(and hence, more waypoints) compared to traversing a straight path. Subsequently,
the poses containing x, y coordinates and orientation quaternion are computed.
An illustrative example of trajectory generation derived from a path is depicted in
Fig. 3.8.
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Figure 3.8: An example of trajectory generated from a path, with red arrows rep-
resenting robot’s position and orientation.

3.4 Dynamic replanner

As this project considers the scenario of an underwater robot, the dynamic, aquatic
environment requires flexibility in planning. The existing currents can result in
obstacles’ displacement and cause the robot to drift from the intended path. These
cases necessitate the trajectory replanning to accommodate the new conditions.

Upon processing information on the updated map of the environment and the his-
torical pose data, the program identifies the remaining area to be covered and the
new starting point, which correspond to the last visited pose. The updated data is
fed into the coverage planner path recomputation.

Three methodologies have been investigated to determine the remaining area to
be covered. Each method requires converting each visited pose into a rectangular
representation equivalent to the sensor’s footprint at the given robot position and
orientation.

The first approach (Fig. 3.9a) relies on the convex hull generation from the vertices
of all the calculated footprint rectangles. Upon obtaining the updated polygon with
specified holes, the polygon corresponding to the convex hull is subtracted from the
environmental map. The planner perceives it as either an obstacle or an area out
of interest. However, this approach proves to be restrictive as it might erroneously
discard unvisited regions, depending on the position of the vertices.

To address this limitation, the implementation of concave hulls (Fig. 3.9c,3.9d)
was investigated. Alpha shapes were used to formulate the concave hull. A crucial
aspect of this approach lies in fine-tuning the α parameter, which controls the detail
level of the shapes. However, the ideal alpha value is scenario-dependent and an
automatic, real-time parameter tuning was found to be unfeasible in this project
scope.

The approach that yields the most promising and accurate results involves subtract-
ing each footprint-related rectangle from the input polygon individually (Fig. 3.9b).
While this technique does not require parameter tuning or does not discard uncov-
ered areas, it also presents a set of challenges. The approach tends to account for
even minimal uncovered areas, resulting e.g. from smoothing-related coverage loss,
thereby generating unnecessary path segments or, occasionally, leading to errors
due to the polygon not being simple. Moreover, the resulting polygon may contain
an excessive number of vertices, especially when a turn is executed and contributes
to the polygon’s boundary definition. Consequently, the coverage planner may de-
compose the polygon into numerous parts with very small areas, prompting the
robot to sweep them, although due to their proximity is not necessary.
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(a) Convex hull. (b) Sensor footprint’s hull.

(c) Concave hull with α = 0.3. (d) Concave hull with α = 1.0.

Figure 3.9: Replanning hulls, visualized by blue areas. Black arrows indicate the
already visited poses, while the red dots correspond to x, y coordinates of path
points that robot would have yet to visit.
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The example of unsmoothed replanning performed on the updated environment
(Fig. 3.10) is presented in Fig. 3.11. It can be noticed that the convex hull discarded
more area than the sensor footprint-based hull. The new plan could not be created
for the concave hull case – the generated polygon is not simple, as illustrated in
Fig. 3.12.

Figure 3.10: The map of the environment with the initial obstacles position (black-
bordered polygons) and the updated ones (red-bordered polygons).

(a) Convex hull replanning. (b) Sensor footprint’s hull replanning.

(c) Generated trajectory for convex hull re-
planning.

(d) Generated trajectory for sensor foot-
print’s hull replanning.

Figure 3.11: Replanning example for the convex and sensor footprint hull. In a)
and b) the blue line represents the traversed path, while the red polygons are the
area yet to be covered by the robot.

Potential improvements of the replanning method are discussed in Conclusions.
However, due to the limited scope of the project, further development of the re-
planner was not continued.
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Figure 3.12: Visualization of the problem present with concave hull subtraction.
The blue line represents the traversed path, the red polygon is the area yet to be
covered by the robot and yellow elements represent the polygon’s holes.

3.5 Software pipeline overview

The implemented solution, written in C++, utilizes the ROS Noetic framework,
leveraging the open-source coverage path planner [10]. Fig. 3.13 depicts the devel-
oped ROS pipeline. Nodes replanner and smooth trajectory generator were inte-
grated into trajectory generation tools package.
The smoothing logic is implemented in the smooth trajectory generator node. The
node subscribes to the polygon topic to contain the obstacles’ description for collision-
related path assessment, and to waypoint list to access coverage path planner out-
put. The result in a form of trajectory points is published on trajectory topic. The
node replanner acquires the updated map of the environment and the historical
pose data from the updated polygon and visited topics respectively.
While coverage planner was initially a part of polygon coverage ros, the start and
goal points selection was tedious – the Point messages were published on the same
topic and the order defined which message corresponded to the start, and which to
the goal. Additionally, once the end point was received, the coverage path planner
was immediately activated, without offering an option to change anything in case
of an erroneous click in rviz tool or a misspelling in rostopic pub command. To
provide the user with a more flexible interface, an improved rviz point tool was
implemented (Fig. 3.14). Therefore, modifications were applied to coverage planner
interface and for the simplicity of implementation, this node was incorporated into
trajectory generation tools package.
The utilized coverage path planner was developed using C++ language within ROS
Noetic architecture. The program further incorporated the Computational Geome-
try Algorithms Library, and a memetic solver for the generalized traveling salesman
problem. To invoke the planner’s operation, an input polygon with holes (namely
the area of interest) as well as the start and goal positions need to be published on
the corresponding topics – or selected with the provided RVIZ user interface. The
planner generates a list of waypoints defining an ouput path.
Additionally, the system includes a set of adjustable parameters tailored to user’s
specifications. For instance, the type of decomposition, cost function, wall offset,
or sensor-related settings are some of the customizable inputs. The selected config-
uration for this project is further described in Chapter 4.
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Figure 3.13: ROS pipeline.

Figure 3.14: Improved RVIZ tool part – addition of Start, Goal and Activate func-
tionalities. The start and goal positions are visualized after being defined with the
corresponding tool and can be modified before activating the coverage path plan-
ning, in contrary to the scenario with the original Publish Point usage.



Chapter 4

Experiments

To evaluate the effectiveness of the proposed smoothing algorithms, a series of tests
were conducted using a real-wolrd robotic system – Proteus underwater vehicle,
developed by Tethys Robotics team – in the Zurich Lake. The coverage path planner
was deployed on a map 30m×30m that featured two obstacles, as illustrated in
Fig. 4.1.

Figure 4.1: The map of the environment for the experiments.

The planner’s parameters were set as follows: Boustrophedon decomposition type,
time cost function, and a wall offset of one meter. The desired lateral overlap was
established at 40%, and the robot was supposed to maintain the distance of 3 meters
between the sensor and the bottom of the lake.
The sensor used in these tests was a frustum sensor, with a lateral field of view
(FOV) of 2.27 rad, and the onward FOV of 0.52 rad. Robot’s optimal turning
radius was configured to be 1m, whereas the sampling distances were equal to 0.5m
for segments and 0.1m for arcs respectively.
Performance comparison was carried out between smoothed (Fig. 4.2b) and un-
smoothed (Fig. 4.2a) trajectories. Heatmaps depicted in Fig. 4.2c,4.2d represent
the expected coverage of the area (along with the path), based on the generated
trajectory. For these scenarios, there is no coverage loss in both cases.
The robot’s operation was tested in water, with the resulting robot’s trajectories
depicted in Fig. 4.3.
Because of a high yaw-related gain and smaller number of waypoints, turning in

19
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(a) Unsmoothed path – trajectory. (b) Smoothed path – trajectory.

(c) Unsmoothed path – heatmap. (d) Smoothed path – heatmap.

Figure 4.2: Trajectories and heatmaps generated for smoothed and unsmoothed
scenario.

(a) Unsmoothed trajectory. (b) Smoothed trajectory.

Figure 4.3: Trajectories from experiments. Black arrows correspond to the actual
robot poses, while the red lines mark the desired trajectory.
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metric smoothed unsmoothed

traversing time 1529 s 1241 s
coverage loss 0% 0%

trajectory error 293.44 m 452.20 m

Table 4.1: Comparison of metrics chosen for evaluation of the smoothed and un-
smoothed trajectories.

1st 5th 10th 25th 50th 75th 90th 95th 99th

unsmoothed 0.01 0.03 0.04 0.07 0.13 0.23 0.34 0.47 0.63
smoothed 0.01 0.02 0.03 0.05 0.08 0.13 0.21 0.28 0.54

Table 4.2: Percentile’s values for smoothed and unsmoothed trajectories errors (in
meters).

place turned out to be more efficient in terms of time than following a smoothed
trajectory. This observation is supported by the data shown in Tab. 4.1. De-
spite this, the scenario involving the smoothed trajectory demonstrated superior
trajectory-following properties.
In evaluating the accumulated trajectory error—which is represented by the Eu-
clidean distance between the ground truth and the actual trajectory—the smoothed
path yields a 35% reduction compared to the segment-based path. Furthermore, the
error distribution associated with the smoothed trajectory is comparatively more
desirable. As depicted in Tab. 4.2, 99% of errors are below 0.54 m in the smoothed
scenario, as opposed to 0.63 m in the unsmoothed version. Although the smoothed
version manifests more outliers, these errors are closely clustered around a lower
mean value in comparison to the unsmoothed version, as demonstrated in Fig. 4.5.
It is noteworthy that in the smoothed scenario, outliers in the x-axis exhibit much
higher values compared to those along the y-axis.
The refined coverage path planning can be used for object search and environment
mapping – the sensor’s measurements after traversing the whole trajectory are de-
picted in a form of an lake’s bottom scan in Fig. 4.4.

Figure 4.4: The mapped bottom of the lake.
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(a) Histogram of the trajectory errors. (b) Gaussian curve fits into the errors.

(c) Trajectory errors with respect to x, y and Eu-
clidean measure for both trajectories.

Figure 4.5: Trajectories error statistics.

In light of the unexpected results where the robot demonstrated a faster turn-in-
place than following a smoothed trajectory, a subsequent experiment was initiated
to investigate these dependencies further. The updated experiment employed a
smaller map with dimensions of 7.5m×7.5m, and incorporated a larger number
of turns (inclusive of the outer smoothing scenario). The yaw-related gain in the
controller was reduced to mimic the behavior of a robot with distinct kinematic
properties. Furthermore, an increased number of waypoints was generated for the
in-place rotations. The outcomes, as presented in Tab. 4.3, exhibited a reverse
trend in comparison to the initial findings. The traversal time for the smoothed
trajectory manifested an improvement at the expense of significant degradation in
the trajectory-following precision when contrasted with the unsmoothed scenario.
This indicates the complex dependencies between controller gains, robot kinematics,
and path characteristics in influencing overall performance.

Additionally, this study investigated a scenario that, despite not displaying a sig-
nificant difference in coverage between smoothed and unsmoothed paths under the
initial conditions, revealed a noticeable disparity when reducing the lateral over-
lap and the lateral FOV. Upon simulating the change of lateral overlap to 0% and
modifying the lateral FOV, a consequential rise in disparity was observed. Specifi-
cally, the difference increased up to 1.9% for the smoothed scenario, whereas for the
unsmoothed one, it remained negligibly low at 0.0001%. Representative trajecto-
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metric smoothed unsmoothed

traversing time 531 s 703 s
coverage loss 0% 0%

trajectory error 283.98 m 239.34 m

Table 4.3: Comparison of metrics chosen for evaluation of the smoothed and un-
smoothed trajectories – decreased yaw-related gain.

ries under these conditions are illustrated in Fig. 4.6a,4.6b, and the corresponding
heatmaps in Fig. 4.6c,4.6d. It can be observed that the coverage loss occurs with
path segments forming acute angles in the inner smoothing scenario – the closer the
angle is to 0o, the further the curve is from the original waypoint, hence the higher
the coverage loss is.

(a) Unsmoothed path – trajectory. (b) Smoothed path – trajectory.

(c) Unsmoothed path – heatmap. (d) Smoothed path – heatmap.

Figure 4.6: Trajectories and heatmaps corresponding to the coverage of smoothed
and unsmoothed paths generated for an example showing the coverage difference.
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Chapter 5

Conclusions

This project introduces an improvement in the domain of coverage path planning.
It emphasizes post-processing measures, such as path smoothing and trajectory
generation. The resulting trajectory, where feasible, adopts the structure of Dubins
path. The application of either the inner or outer smoothing algorithm formulated
as a constrained optimization problem depends on the positioning of the obstacles,
with the latter presenting two distinct variants.
While the proposed smoothing algorithm already demonstrates satisfactory results,
there exist room for further advancements. One such direction involves the inte-
gration of other successful methods like Bezier curves or clothoid-based smoothing.
For instance, the application of these methods in inner smoothing combined with
the use of Dubins curves for outer smoothing could potentially yield better results.
Another potential area of exploration involves an investigation into the application
of variable circle radii within the context of Dubins path. This adjustment could
expand the applicability of smoothing across all cases, especially those involving
closely-spaced waypoints.
The current algorithm implements a localized optimization strategy for path smooth-
ing – specifically, if the smoothing operation cannot be initiated from the terminal
point of the prior smoothing step, the path remains unsmoothed. A potential en-
hancement to this approach could involve the examination of global optimization
strategies. By employing such methods, the number of turns subject to smooth-
ing may be increased, thereby optimizing the path on a more comprehensive scale.
This could yield improvements in the overall trajectory planning and enhance the
performance of the navigation algorithm.
This project also attempted to implement a dynamic replanner. Despite the lim-
itations posed by the three proposed approaches, there remain opportunities for
extension of these methods. One such opportunity could involve the development of
an algorithm that simplifies or approximates the polygon generated by sensor foot-
print rectangles. This step could considerably facilitate the decomposition process
performed by the coverage path planner, making it more manageable and efficient.
In terms of practical implementation, a comparative analysis was conducted be-
tween unsmoothed and smoothed trajectories using real-world underwater robot
testing. This comparison not only validated the efficacy of the proposed solutions
but also provided valuable insights for future developments. While the unsmoothed
paths demonstrated superior speed in traversing, the smoothed methodology mani-
fested an enhancement in trajectory tracking precision up to 35% in comparison to
the original pathway. Interestingly, this dynamic was inverted when the yaw-related
gain in the controller was diminished and additional waypoints were incorporated
in the in-place turns. Under these conditions, the segment-based trajectory had the
improved tracking characteristics, however at the cost of extended traversal time.

25
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Future investigations could concentrate on determining the correlations between
these properties, broadening the scope of analyzed scenarios, and conducting ex-
perimental trials with robots exhibiting a diverse range of kinematic attributes in
a underwater environment with stronger water currents.
In conclusion, this project proposes constrained optimization algorithms to smooth
straight-line coverage paths using Dubins curves, thereby boosting the robot’s tra-
jectory tracking capabilities, with potential scope for enhancing traversal time effi-
ciency. The project provides a foundation for further research in the field of smooth
coverage path planning. Future work should focus on refining the introduced ap-
proaches, exploring and combining new methods for path smoothing, and developing
more efficient algorithms for dynamic replanning.
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[10] R. Bähnemann, N. Lawrance, J. J. Chung, M. Pantic, R. Siegwart, and
J. Nieto, “Revisiting boustrophedon coverage path planning as a generalized
traveling salesman problem,” pp. 277–290, 2021.

[11] R. Carvalho, H. Vidal, P. Vieira, and I. Ribeiro, “Complete coverage path
planning and guidance for cleaning robots,” 04 1998.

27



Bibliography 28

[12] Y. Liu, W. Zhao, H. Liu, Y. Wang, and X. Yue, “Coverage path planning for
robotic quality inspection with control on measurement uncertainty,” CoRR,
vol. abs/2201.04310, 2022.

[13] N. Basilico and S. Carpin, “Deploying teams of heterogeneous uavs in co-
operative two-level surveillance missions,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 610–615.

[14] I. A. Hameed, “Coverage path planning software for autonomous robotic lawn
mower using dubins’ curve,” in 2017 IEEE International Conference on Real-
time Computing and Robotics (RCAR), 2017, pp. 517–522.

[15] N. Gyagenda, A. K. Nasir, H. Roth, and V. Zhmud, “Coverage path plan-
ning for large-scale aerial mapping,” in Towards Autonomous Robotic Systems,
K. Althoefer, J. Konstantinova, and K. Zhang, Eds. Cham: Springer Inter-
national Publishing, 2019, pp. 251–262.

[16] C. Cai, J. Chen, Q. Yan, and F. Liu, “A multi-robot coverage path planning
method for maritime search and rescue using multiple auvs,” Remote Sensing,
vol. 15, no. 1, 2023.

[17] M. Kloetzer and N. Ghita, “Software tool for constructing cell decomposi-
tions,” in 2011 IEEE International Conference on Automation Science and
Engineering, 2011, pp. 507–512.

[18] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellu-
lar decomposition,” in Field and Service Robotics, A. Zelinsky, Ed. London:
Springer London, 1998, pp. 203–209.

[19] Y.-S. Jiao, X.-M. Wang, H. Chen, and Y. Li, “Research on the coverage path
planning of uavs for polygon areas,” in 2010 5th IEEE Conference on Industrial
Electronics and Applications, 2010, pp. 1467–1472.

[20] J. I. Vasquez Gomez, M. M. Melchor, and J. C. Herrera Lozada, “Optimal cov-
erage path planning based on the rotating calipers algorithm,” in 2017 Inter-
national Conference on Mechatronics, Electronics and Automotive Engineering
(ICMEAE), 2017, pp. 140–144.

[21] J. Huang, W. fu, S. Luo, C. Wang, B. Zhang, and Y. Bai, “A practi-
cal interlacing-based coverage path planning method for fixed-wing uav pho-
togrammetry in convex polygon regions,” Aerospace, vol. 9, p. 521, 09 2022.

[22] A. Zelinsky, R. Jarvis, J. Byrne, and S. Yuta, “Planning paths of complete
coverage of an unstructured environment by a mobile robot,” 2007.

[23] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of continuous areas
by a mobile robot,” in Proceedings 2001 ICRA. IEEE International Conference
on Robotics and Automation (Cat. No.01CH37164), vol. 2, 2001, pp. 1927–1933
vol.2.

[24] B. Pang, Y. Song, C. Zhang, and R. Yang, “Effect of random walk methods
on searching efficiency in swarm robots for area exploration,” Applied
Intelligence, vol. 51, no. 7, pp. 5189–5199, 2021.

[25] C. Li, Y. Song, F. Wang, Z. Wang, and Y. Li, “A bounded strategy of
the mobile robot coverage path planning based on lorenz chaotic system,”
International Journal of Advanced Robotic Systems, vol. 13, no. 3, p. 107,
2016.



29 Bibliography

[26] G. Hao, Q. Lv, Z. Huang, H. Zhao, and W. Chen, “Uav path planning based
on improved artificial potential field method,” Aerospace, vol. 10, no. 6, 2023.

[27] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path plan-
ning,” The annual research report, 1998.

[28] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding
horizon ”next-best-view” planner for 3d exploration,” in 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016, pp. 1462–1468.

[29] R. Tarjan, “Depth-first search and linear graph algorithms,” in 12th Annual
Symposium on Switching and Automata Theory (swat 1971), 1971, pp. 114–
121.

[30] J. Holdsworth, “The nature of breadth-first search,” 02 1999.

[31] A. Javaid, “Understanding dijkstra algorithm,” SSRN Electronic Journal, 01
2013.

[32] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, and E. Gunawan, “A
systematic literature review of a* pathfinding,” Procedia Computer Science,
vol. 179, pp. 507–514, 2021, 5th International Conference on Computer
Science and Computational Intelligence 2020.

[33] Z. Wang and Z. Bo, “Coverage path planning for mobile robot based on genetic
algorithm,” in 2014 IEEE Workshop on Electronics, Computer and Applica-
tions, 2014, pp. 732–735.

[34] Z. Chibin, W. Xingsong, and D. Yong, “Complete coverage path planning
based on ant colony algorithm,” in 2008 15th International Conference on
Mechatronics and Machine Vision in Practice, 2008, pp. 357–361.

[35] A. Lakshmanan, R. E. Mohan, B. Ramalingam, L. Anh Vu, P. Veerajagadesh-
war, K. Tiwari, and M. Ilyas, “Complete coverage path planning using re-
inforcement learning for tetromino based cleaning and maintenance robot,”
Automation in Construction, vol. 112, p. 103078, 04 2020.

[36] S. Yang and C. Luo, “A neural network approach to complete coverage path
planning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), vol. 34, no. 1, pp. 718–724, 2004.

[37] E. Galceran, R. Campos, N. Palomeras, M. Carreras, and P. Ridao, “Coverage
path planning with realtime replanning for inspection of 3d underwater struc-
tures,” in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 6586–6591.

[38] M. Coombes, T. Fletcher, W.-H. Chen, and C. Liu, “Optimal polygon decom-
position for uav survey coverage path planning in wind,” Sensors, vol. 18, p.
2132, 07 2018.

[39] G. Parlangeli and G. Indiveri, “Dubins inspired 2d smooth paths with
bounded curvature and curvature derivative.” IFAC Proceedings Volumes,
vol. 43, no. 16, pp. 252–257, 2010, 7th IFAC Symposium on Intelligent
Autonomous Vehicles.

[40] S. Bochkarev and S. L. Smith, “On minimizing turns in robot coverage path
planning,” in 2016 IEEE International Conference on Automation Science and
Engineering (CASE), 2016, pp. 1237–1242.



Bibliography 30
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[42] M. Brezak and I. Petrović, “Path smoothing using clothoids for differential
drive mobile robots,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1133–1138,
2011, 18th IFAC World Congress.
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